Properties

Label 624.4
Level 624
Weight 4
Dimension 13346
Nonzero newspaces 28
Sturm bound 86016
Trace bound 13

Downloads

Learn more

Defining parameters

Level: N N = 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k = 4 4
Nonzero newspaces: 28 28
Sturm bound: 8601686016
Trace bound: 1313

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(624))M_{4}(\Gamma_1(624)).

Total New Old
Modular forms 32928 13546 19382
Cusp forms 31584 13346 18238
Eisenstein series 1344 200 1144

Trace form

13346q8q34q580q684q7168q8120q9304q10+120q11+184q1246q13+696q14318q15+560q16+52q1756q18100q19160q20++6638q99+O(q100) 13346 q - 8 q^{3} - 4 q^{5} - 80 q^{6} - 84 q^{7} - 168 q^{8} - 120 q^{9} - 304 q^{10} + 120 q^{11} + 184 q^{12} - 46 q^{13} + 696 q^{14} - 318 q^{15} + 560 q^{16} + 52 q^{17} - 56 q^{18} - 100 q^{19} - 160 q^{20}+ \cdots + 6638 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(624))S_{4}^{\mathrm{new}}(\Gamma_1(624))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
624.4.a χ624(1,)\chi_{624}(1, \cdot) 624.4.a.a 1 1
624.4.a.b 1
624.4.a.c 1
624.4.a.d 1
624.4.a.e 1
624.4.a.f 1
624.4.a.g 1
624.4.a.h 1
624.4.a.i 1
624.4.a.j 2
624.4.a.k 2
624.4.a.l 2
624.4.a.m 2
624.4.a.n 2
624.4.a.o 2
624.4.a.p 2
624.4.a.q 2
624.4.a.r 2
624.4.a.s 3
624.4.a.t 3
624.4.a.u 3
624.4.c χ624(337,)\chi_{624}(337, \cdot) 624.4.c.a 2 1
624.4.c.b 2
624.4.c.c 4
624.4.c.d 4
624.4.c.e 4
624.4.c.f 4
624.4.c.g 10
624.4.c.h 12
624.4.d χ624(287,)\chi_{624}(287, \cdot) 624.4.d.a 12 1
624.4.d.b 12
624.4.d.c 24
624.4.d.d 24
624.4.g χ624(313,)\chi_{624}(313, \cdot) None 0 1
624.4.h χ624(311,)\chi_{624}(311, \cdot) None 0 1
624.4.j χ624(599,)\chi_{624}(599, \cdot) None 0 1
624.4.m χ624(25,)\chi_{624}(25, \cdot) None 0 1
624.4.n χ624(623,)\chi_{624}(623, \cdot) 624.4.n.a 2 1
624.4.n.b 2
624.4.n.c 24
624.4.n.d 56
624.4.q χ624(289,)\chi_{624}(289, \cdot) 624.4.q.a 2 2
624.4.q.b 2
624.4.q.c 2
624.4.q.d 4
624.4.q.e 4
624.4.q.f 4
624.4.q.g 6
624.4.q.h 6
624.4.q.i 8
624.4.q.j 8
624.4.q.k 8
624.4.q.l 8
624.4.q.m 10
624.4.q.n 12
624.4.r χ624(499,)\chi_{624}(499, \cdot) n/a 336 2
624.4.u χ624(5,)\chi_{624}(5, \cdot) n/a 664 2
624.4.v χ624(155,)\chi_{624}(155, \cdot) n/a 664 2
624.4.x χ624(157,)\chi_{624}(157, \cdot) n/a 288 2
624.4.bb χ624(151,)\chi_{624}(151, \cdot) None 0 2
624.4.bc χ624(31,)\chi_{624}(31, \cdot) 624.4.bc.a 14 2
624.4.bc.b 14
624.4.bc.c 28
624.4.bc.d 28
624.4.bf χ624(161,)\chi_{624}(161, \cdot) n/a 164 2
624.4.bg χ624(281,)\chi_{624}(281, \cdot) None 0 2
624.4.bh χ624(131,)\chi_{624}(131, \cdot) n/a 576 2
624.4.bj χ624(181,)\chi_{624}(181, \cdot) n/a 336 2
624.4.bm χ624(317,)\chi_{624}(317, \cdot) n/a 664 2
624.4.bn χ624(187,)\chi_{624}(187, \cdot) n/a 336 2
624.4.bq χ624(23,)\chi_{624}(23, \cdot) None 0 2
624.4.br χ624(217,)\chi_{624}(217, \cdot) None 0 2
624.4.bu χ624(191,)\chi_{624}(191, \cdot) n/a 168 2
624.4.bv χ624(49,)\chi_{624}(49, \cdot) 624.4.bv.a 2 2
624.4.bv.b 2
624.4.bv.c 4
624.4.bv.d 4
624.4.bv.e 4
624.4.bv.f 6
624.4.bv.g 8
624.4.bv.h 10
624.4.bv.i 20
624.4.bv.j 24
624.4.bz χ624(95,)\chi_{624}(95, \cdot) n/a 168 2
624.4.ca χ624(121,)\chi_{624}(121, \cdot) None 0 2
624.4.cd χ624(263,)\chi_{624}(263, \cdot) None 0 2
624.4.ce χ624(149,)\chi_{624}(149, \cdot) n/a 1328 4
624.4.ch χ624(19,)\chi_{624}(19, \cdot) n/a 672 4
624.4.cj χ624(205,)\chi_{624}(205, \cdot) n/a 672 4
624.4.cl χ624(35,)\chi_{624}(35, \cdot) n/a 1328 4
624.4.cm χ624(41,)\chi_{624}(41, \cdot) None 0 4
624.4.cn χ624(305,)\chi_{624}(305, \cdot) n/a 328 4
624.4.cq χ624(175,)\chi_{624}(175, \cdot) n/a 168 4
624.4.cr χ624(7,)\chi_{624}(7, \cdot) None 0 4
624.4.cv χ624(61,)\chi_{624}(61, \cdot) n/a 672 4
624.4.cx χ624(179,)\chi_{624}(179, \cdot) n/a 1328 4
624.4.cz χ624(115,)\chi_{624}(115, \cdot) n/a 672 4
624.4.da χ624(245,)\chi_{624}(245, \cdot) n/a 1328 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S4old(Γ1(624))S_{4}^{\mathrm{old}}(\Gamma_1(624)) into lower level spaces

S4old(Γ1(624)) S_{4}^{\mathrm{old}}(\Gamma_1(624)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))20^{\oplus 20}\oplusS4new(Γ1(2))S_{4}^{\mathrm{new}}(\Gamma_1(2))16^{\oplus 16}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))10^{\oplus 10}\oplusS4new(Γ1(4))S_{4}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS4new(Γ1(6))S_{4}^{\mathrm{new}}(\Gamma_1(6))8^{\oplus 8}\oplusS4new(Γ1(8))S_{4}^{\mathrm{new}}(\Gamma_1(8))8^{\oplus 8}\oplusS4new(Γ1(12))S_{4}^{\mathrm{new}}(\Gamma_1(12))6^{\oplus 6}\oplusS4new(Γ1(13))S_{4}^{\mathrm{new}}(\Gamma_1(13))10^{\oplus 10}\oplusS4new(Γ1(16))S_{4}^{\mathrm{new}}(\Gamma_1(16))4^{\oplus 4}\oplusS4new(Γ1(24))S_{4}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS4new(Γ1(26))S_{4}^{\mathrm{new}}(\Gamma_1(26))8^{\oplus 8}\oplusS4new(Γ1(39))S_{4}^{\mathrm{new}}(\Gamma_1(39))5^{\oplus 5}\oplusS4new(Γ1(48))S_{4}^{\mathrm{new}}(\Gamma_1(48))2^{\oplus 2}\oplusS4new(Γ1(52))S_{4}^{\mathrm{new}}(\Gamma_1(52))6^{\oplus 6}\oplusS4new(Γ1(78))S_{4}^{\mathrm{new}}(\Gamma_1(78))4^{\oplus 4}\oplusS4new(Γ1(104))S_{4}^{\mathrm{new}}(\Gamma_1(104))4^{\oplus 4}\oplusS4new(Γ1(156))S_{4}^{\mathrm{new}}(\Gamma_1(156))3^{\oplus 3}\oplusS4new(Γ1(208))S_{4}^{\mathrm{new}}(\Gamma_1(208))2^{\oplus 2}\oplusS4new(Γ1(312))S_{4}^{\mathrm{new}}(\Gamma_1(312))2^{\oplus 2}