Properties

Label 625.2.a
Level 625625
Weight 22
Character orbit 625.a
Rep. character χ625(1,)\chi_{625}(1,\cdot)
Character field Q\Q
Dimension 3232
Newform subspaces 77
Sturm bound 125125
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 625=54 625 = 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 625.a (trivial)
Character field: Q\Q
Newform subspaces: 7 7
Sturm bound: 125125
Trace bound: 33
Distinguishing TpT_p: 22, 33

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(625))M_{2}(\Gamma_0(625)).

Total New Old
Modular forms 77 48 29
Cusp forms 48 32 16
Eisenstein series 29 16 13

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

55TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++363622221414222214148814148866
-414126261515262618188815158877

Trace form

32q+24q4+4q6+16q9+4q11+8q14+12q1610q196q21+20q246q26+10q296q31+18q34+12q36+2q39+14q4122q4426q46++2q99+O(q100) 32 q + 24 q^{4} + 4 q^{6} + 16 q^{9} + 4 q^{11} + 8 q^{14} + 12 q^{16} - 10 q^{19} - 6 q^{21} + 20 q^{24} - 6 q^{26} + 10 q^{29} - 6 q^{31} + 18 q^{34} + 12 q^{36} + 2 q^{39} + 14 q^{41} - 22 q^{44} - 26 q^{46}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(625))S_{2}^{\mathrm{new}}(\Gamma_0(625)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 5
625.2.a.a 625.a 1.a 22 4.9914.991 Q(5)\Q(\sqrt{5}) None 625.2.a.a 1-1 3-3 00 1-1 ++ SU(2)\mathrm{SU}(2) qβq2+(1β)q3+(1+β)q4+q-\beta q^{2}+(-1-\beta )q^{3}+(-1+\beta )q^{4}+\cdots
625.2.a.b 625.a 1.a 22 4.9914.991 Q(5)\Q(\sqrt{5}) None 25.2.d.a 1-1 22 00 1-1 ++ SU(2)\mathrm{SU}(2) qβq2+q3+(1+β)q4βq6+q-\beta q^{2}+q^{3}+(-1+\beta )q^{4}-\beta q^{6}+\cdots
625.2.a.c 625.a 1.a 22 4.9914.991 Q(5)\Q(\sqrt{5}) None 25.2.d.a 11 2-2 00 11 ++ SU(2)\mathrm{SU}(2) q+βq2q3+(1+β)q4βq6+q+\beta q^{2}-q^{3}+(-1+\beta )q^{4}-\beta q^{6}+\cdots
625.2.a.d 625.a 1.a 22 4.9914.991 Q(5)\Q(\sqrt{5}) None 625.2.a.a 11 33 00 11 - SU(2)\mathrm{SU}(2) q+βq2+(1+β)q3+(1+β)q4+(1+)q6+q+\beta q^{2}+(1+\beta )q^{3}+(-1+\beta )q^{4}+(1+\cdots)q^{6}+\cdots
625.2.a.e 625.a 1.a 88 4.9914.991 8.8.6152203125.1 None 625.2.a.e 5-5 5-5 00 10-10 ++ SU(2)\mathrm{SU}(2) q+(1+β1)q2+(β3β5+β7)q3+q+(-1+\beta _{1})q^{2}+(\beta _{3}-\beta _{5}+\beta _{7})q^{3}+\cdots
625.2.a.f 625.a 1.a 88 4.9914.991 8.8.\cdots.2 None 25.2.e.a 00 00 00 00 - SU(2)\mathrm{SU}(2) q+β1q2+(β5+β6)q3+(1+β2+)q4+q+\beta _{1}q^{2}+(-\beta _{5}+\beta _{6})q^{3}+(1+\beta _{2}+\cdots)q^{4}+\cdots
625.2.a.g 625.a 1.a 88 4.9914.991 8.8.6152203125.1 None 625.2.a.e 55 55 00 1010 - SU(2)\mathrm{SU}(2) q+(1β1)q2+(β3+β5β7)q3+q+(1-\beta _{1})q^{2}+(-\beta _{3}+\beta _{5}-\beta _{7})q^{3}+\cdots

Decomposition of S2old(Γ0(625))S_{2}^{\mathrm{old}}(\Gamma_0(625)) into lower level spaces

S2old(Γ0(625)) S_{2}^{\mathrm{old}}(\Gamma_0(625)) \simeq S2new(Γ0(125))S_{2}^{\mathrm{new}}(\Gamma_0(125))2^{\oplus 2}