Defining parameters
Level: | \( N \) | \(=\) | \( 625 = 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 625.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(125\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(625))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 77 | 48 | 29 |
Cusp forms | 48 | 32 | 16 |
Eisenstein series | 29 | 16 | 13 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | Dim |
---|---|
\(+\) | \(14\) |
\(-\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(625))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(625))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(625)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(125))\)\(^{\oplus 2}\)