Properties

Label 625.2.d
Level 625625
Weight 22
Character orbit 625.d
Rep. character χ625(126,)\chi_{625}(126,\cdot)
Character field Q(ζ5)\Q(\zeta_{5})
Dimension 136136
Newform subspaces 1717
Sturm bound 125125
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 625=54 625 = 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 625.d (of order 55 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 25 25
Character field: Q(ζ5)\Q(\zeta_{5})
Newform subspaces: 17 17
Sturm bound: 125125
Trace bound: 66
Distinguishing TpT_p: 22, 33

Dimensions

The following table gives the dimensions of various subspaces of M2(625,[χ])M_{2}(625, [\chi]).

Total New Old
Modular forms 308 184 124
Cusp forms 188 136 52
Eisenstein series 120 48 72

Trace form

136q28q4+12q622q9+12q11+24q144q16+12q2140q2468q2620q29+12q31+14q3424q3624q398q4116q44+12q46+64q99+O(q100) 136 q - 28 q^{4} + 12 q^{6} - 22 q^{9} + 12 q^{11} + 24 q^{14} - 4 q^{16} + 12 q^{21} - 40 q^{24} - 68 q^{26} - 20 q^{29} + 12 q^{31} + 14 q^{34} - 24 q^{36} - 24 q^{39} - 8 q^{41} - 16 q^{44} + 12 q^{46}+ \cdots - 64 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(625,[χ])S_{2}^{\mathrm{new}}(625, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
625.2.d.a 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 125.2.a.a 3-3 4-4 00 1212 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1+ζ103)q2+(1+ζ10ζ103)q3+q+(-1+\zeta_{10}^{3})q^{2}+(-1+\zeta_{10}-\zeta_{10}^{3})q^{3}+\cdots
625.2.d.b 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 25.2.d.a 3-3 11 00 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1+ζ103)q2+ζ103q3+(1ζ10+)q4+q+(-1+\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+(1-\zeta_{10}+\cdots)q^{4}+\cdots
625.2.d.c 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 625.2.a.a 3-3 11 00 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1+ζ103)q2+(1ζ102ζ103)q3+q+(-1+\zeta_{10}^{3})q^{2}+(1-\zeta_{10}-2\zeta_{10}^{3})q^{3}+\cdots
625.2.d.d 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 125.2.a.a 2-2 1-1 00 12-12 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10+ζ102)q2+(1+ζ10+)q3+q+(-\zeta_{10}+\zeta_{10}^{2})q^{2}+(-1+\zeta_{10}+\cdots)q^{3}+\cdots
625.2.d.e 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 625.2.a.a 2-2 44 00 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10+ζ102)q2+(1ζ10+ζ103)q3+q+(-\zeta_{10}+\zeta_{10}^{2})q^{2}+(1-\zeta_{10}+\zeta_{10}^{3})q^{3}+\cdots
625.2.d.f 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 625.2.a.a 22 4-4 00 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10ζ102)q2+(1+ζ10ζ103)q3+q+(\zeta_{10}-\zeta_{10}^{2})q^{2}+(-1+\zeta_{10}-\zeta_{10}^{3})q^{3}+\cdots
625.2.d.g 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 125.2.a.a 22 11 00 1212 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10ζ102)q2+(1ζ102ζ103)q3+q+(\zeta_{10}-\zeta_{10}^{2})q^{2}+(1-\zeta_{10}-2\zeta_{10}^{3})q^{3}+\cdots
625.2.d.h 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 25.2.d.a 33 1-1 00 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1ζ103)q2ζ103q3+(1ζ10+)q4+q+(1-\zeta_{10}^{3})q^{2}-\zeta_{10}^{3}q^{3}+(1-\zeta_{10}+\cdots)q^{4}+\cdots
625.2.d.i 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 625.2.a.a 33 1-1 00 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1ζ103)q2+(1+ζ10+2ζ103)q3+q+(1-\zeta_{10}^{3})q^{2}+(-1+\zeta_{10}+2\zeta_{10}^{3})q^{3}+\cdots
625.2.d.j 625.d 25.d 44 4.9914.991 Q(ζ10)\Q(\zeta_{10}) None 125.2.a.a 33 44 00 12-12 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1ζ103)q2+(1ζ10+ζ103)q3+q+(1-\zeta_{10}^{3})q^{2}+(1-\zeta_{10}+\zeta_{10}^{3})q^{3}+\cdots
625.2.d.k 625.d 25.d 88 4.9914.991 8.0.484000000.9 None 125.2.a.c 00 00 00 00 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1β6)q2+(β1+β6+β7)q3+q+(\beta _{1}-\beta _{6})q^{2}+(-\beta _{1}+\beta _{6}+\beta _{7})q^{3}+\cdots
625.2.d.l 625.d 25.d 88 4.9914.991 8.0.484000000.9 None 125.2.a.c 00 00 00 00 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1β4)q2β1q3+(1β2+)q4+q+(-\beta _{1}-\beta _{4})q^{2}-\beta _{1}q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots
625.2.d.m 625.d 25.d 1616 4.9914.991 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 625.2.a.e 5-5 00 00 2020 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1+β3+β4β6)q2+(β2β4+)q3+q+(\beta _{1}+\beta _{3}+\beta _{4}-\beta _{6})q^{2}+(\beta _{2}-\beta _{4}+\cdots)q^{3}+\cdots
625.2.d.n 625.d 25.d 1616 4.9914.991 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 625.2.a.e 00 5-5 00 2020 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β5β6+β7β8β12)q2+q+(-\beta _{5}-\beta _{6}+\beta _{7}-\beta _{8}-\beta _{12})q^{2}+\cdots
625.2.d.o 625.d 25.d 1616 4.9914.991 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 25.2.e.a 00 00 00 00 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1β11β13)q2+(β6+β11+)q3+q+(-\beta _{1}-\beta _{11}-\beta _{13})q^{2}+(-\beta _{6}+\beta _{11}+\cdots)q^{3}+\cdots
625.2.d.p 625.d 25.d 1616 4.9914.991 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 625.2.a.e 00 55 00 20-20 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β5+β6β7+β8+β12)q2+(1+)q3+q+(\beta _{5}+\beta _{6}-\beta _{7}+\beta _{8}+\beta _{12})q^{2}+(1+\cdots)q^{3}+\cdots
625.2.d.q 625.d 25.d 1616 4.9914.991 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 625.2.a.e 55 00 00 20-20 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1+β3β5β7)q2+(β5β15)q3+q+(1+\beta _{3}-\beta _{5}-\beta _{7})q^{2}+(\beta _{5}-\beta _{15})q^{3}+\cdots

Decomposition of S2old(625,[χ])S_{2}^{\mathrm{old}}(625, [\chi]) into lower level spaces

S2old(625,[χ]) S_{2}^{\mathrm{old}}(625, [\chi]) \simeq S2new(25,[χ])S_{2}^{\mathrm{new}}(25, [\chi])3^{\oplus 3}\oplusS2new(125,[χ])S_{2}^{\mathrm{new}}(125, [\chi])2^{\oplus 2}