Defining parameters
Level: | \( N \) | \(=\) | \( 625 = 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 625.d (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(125\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(625, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 308 | 184 | 124 |
Cusp forms | 188 | 136 | 52 |
Eisenstein series | 120 | 48 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(625, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(625, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(625, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 2}\)