Properties

Label 625.2.d
Level $625$
Weight $2$
Character orbit 625.d
Rep. character $\chi_{625}(126,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $136$
Newform subspaces $17$
Sturm bound $125$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 17 \)
Sturm bound: \(125\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(625, [\chi])\).

Total New Old
Modular forms 308 184 124
Cusp forms 188 136 52
Eisenstein series 120 48 72

Trace form

\( 136 q - 28 q^{4} + 12 q^{6} - 22 q^{9} + 12 q^{11} + 24 q^{14} - 4 q^{16} + 12 q^{21} - 40 q^{24} - 68 q^{26} - 20 q^{29} + 12 q^{31} + 14 q^{34} - 24 q^{36} - 24 q^{39} - 8 q^{41} - 16 q^{44} + 12 q^{46}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(625, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
625.2.d.a 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 125.2.a.a \(-3\) \(-4\) \(0\) \(12\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}^{3})q^{2}+(-1+\zeta_{10}-\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.b 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 25.2.d.a \(-3\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+(1-\zeta_{10}+\cdots)q^{4}+\cdots\)
625.2.d.c 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 625.2.a.a \(-3\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}^{3})q^{2}+(1-\zeta_{10}-2\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.d 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 125.2.a.a \(-2\) \(-1\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}+\zeta_{10}^{2})q^{2}+(-1+\zeta_{10}+\cdots)q^{3}+\cdots\)
625.2.d.e 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 625.2.a.a \(-2\) \(4\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}+\zeta_{10}^{2})q^{2}+(1-\zeta_{10}+\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.f 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 625.2.a.a \(2\) \(-4\) \(0\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-\zeta_{10}^{2})q^{2}+(-1+\zeta_{10}-\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.g 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 125.2.a.a \(2\) \(1\) \(0\) \(12\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-\zeta_{10}^{2})q^{2}+(1-\zeta_{10}-2\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.h 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 25.2.d.a \(3\) \(-1\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}^{3})q^{2}-\zeta_{10}^{3}q^{3}+(1-\zeta_{10}+\cdots)q^{4}+\cdots\)
625.2.d.i 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 625.2.a.a \(3\) \(-1\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}^{3})q^{2}+(-1+\zeta_{10}+2\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.j 625.d 25.d $4$ $4.991$ \(\Q(\zeta_{10})\) None 125.2.a.a \(3\) \(4\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}^{3})q^{2}+(1-\zeta_{10}+\zeta_{10}^{3})q^{3}+\cdots\)
625.2.d.k 625.d 25.d $8$ $4.991$ 8.0.484000000.9 None 125.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{1}-\beta _{6})q^{2}+(-\beta _{1}+\beta _{6}+\beta _{7})q^{3}+\cdots\)
625.2.d.l 625.d 25.d $8$ $4.991$ 8.0.484000000.9 None 125.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta _{1}-\beta _{4})q^{2}-\beta _{1}q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)
625.2.d.m 625.d 25.d $16$ $4.991$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 625.2.a.e \(-5\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{1}+\beta _{3}+\beta _{4}-\beta _{6})q^{2}+(\beta _{2}-\beta _{4}+\cdots)q^{3}+\cdots\)
625.2.d.n 625.d 25.d $16$ $4.991$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 625.2.a.e \(0\) \(-5\) \(0\) \(20\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta _{5}-\beta _{6}+\beta _{7}-\beta _{8}-\beta _{12})q^{2}+\cdots\)
625.2.d.o 625.d 25.d $16$ $4.991$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 25.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta _{1}-\beta _{11}-\beta _{13})q^{2}+(-\beta _{6}+\beta _{11}+\cdots)q^{3}+\cdots\)
625.2.d.p 625.d 25.d $16$ $4.991$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 625.2.a.e \(0\) \(5\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{5}+\beta _{6}-\beta _{7}+\beta _{8}+\beta _{12})q^{2}+(1+\cdots)q^{3}+\cdots\)
625.2.d.q 625.d 25.d $16$ $4.991$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 625.2.a.e \(5\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1+\beta _{3}-\beta _{5}-\beta _{7})q^{2}+(\beta _{5}-\beta _{15})q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(625, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(625, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 2}\)