Properties

Label 627.2.ba
Level $627$
Weight $2$
Character orbit 627.ba
Rep. character $\chi_{627}(89,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $396$
Newform subspaces $1$
Sturm bound $160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.ba (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(627, [\chi])\).

Total New Old
Modular forms 504 396 108
Cusp forms 456 396 60
Eisenstein series 48 0 48

Trace form

\( 396 q + 12 q^{4} - 12 q^{10} - 6 q^{13} + 6 q^{15} - 60 q^{16} - 6 q^{19} + 42 q^{24} + 60 q^{28} - 42 q^{30} + 72 q^{34} - 60 q^{36} - 24 q^{39} + 24 q^{40} - 60 q^{42} - 66 q^{43} + 18 q^{45} - 84 q^{48}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(627, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
627.2.ba.a 627.ba 57.j $396$ $5.007$ None 627.2.ba.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(627, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(627, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)