Properties

Label 627.2.be
Level $627$
Weight $2$
Character orbit 627.be
Rep. character $\chi_{627}(10,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $240$
Newform subspaces $1$
Sturm bound $160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.be (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 209 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(627, [\chi])\).

Total New Old
Modular forms 504 240 264
Cusp forms 456 240 216
Eisenstein series 48 0 48

Trace form

\( 240 q + 6 q^{11} - 48 q^{14} + 24 q^{15} - 216 q^{20} + 24 q^{26} - 36 q^{31} - 6 q^{33} - 132 q^{34} + 180 q^{38} + 12 q^{42} - 24 q^{44} - 12 q^{45} + 72 q^{47} + 48 q^{48} + 132 q^{49} + 108 q^{53} - 30 q^{55}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(627, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
627.2.be.a 627.be 209.p $240$ $5.007$ None 627.2.be.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(627, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(627, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 2}\)