Defining parameters
Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 627.be (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 209 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(627, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 504 | 240 | 264 |
Cusp forms | 456 | 240 | 216 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(627, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
627.2.be.a | $240$ | $5.007$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(627, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(627, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 2}\)