Properties

Label 627.4
Level 627
Weight 4
Dimension 31376
Nonzero newspaces 24
Sturm bound 115200
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(115200\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(627))\).

Total New Old
Modular forms 43920 31984 11936
Cusp forms 42480 31376 11104
Eisenstein series 1440 608 832

Trace form

\( 31376 q - 62 q^{3} - 124 q^{4} - 162 q^{6} - 164 q^{7} + 160 q^{8} + 98 q^{9} + 256 q^{10} + 200 q^{11} - 398 q^{12} - 620 q^{13} - 924 q^{14} - 466 q^{15} + 84 q^{16} - 24 q^{17} - 360 q^{18} + 1828 q^{19}+ \cdots + 1628 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(627))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
627.4.a \(\chi_{627}(1, \cdot)\) 627.4.a.a 10 1
627.4.a.b 10
627.4.a.c 10
627.4.a.d 10
627.4.a.e 12
627.4.a.f 12
627.4.a.g 12
627.4.a.h 12
627.4.f \(\chi_{627}(362, \cdot)\) n/a 216 1
627.4.g \(\chi_{627}(56, \cdot)\) n/a 200 1
627.4.h \(\chi_{627}(208, \cdot)\) n/a 120 1
627.4.i \(\chi_{627}(463, \cdot)\) n/a 200 2
627.4.j \(\chi_{627}(58, \cdot)\) n/a 432 4
627.4.k \(\chi_{627}(274, \cdot)\) n/a 240 2
627.4.l \(\chi_{627}(197, \cdot)\) n/a 472 2
627.4.m \(\chi_{627}(122, \cdot)\) n/a 400 2
627.4.r \(\chi_{627}(100, \cdot)\) n/a 600 6
627.4.s \(\chi_{627}(94, \cdot)\) n/a 480 4
627.4.t \(\chi_{627}(113, \cdot)\) n/a 944 4
627.4.u \(\chi_{627}(134, \cdot)\) n/a 864 4
627.4.z \(\chi_{627}(49, \cdot)\) n/a 960 8
627.4.ba \(\chi_{627}(89, \cdot)\) n/a 1200 6
627.4.bd \(\chi_{627}(131, \cdot)\) n/a 1416 6
627.4.be \(\chi_{627}(10, \cdot)\) n/a 720 6
627.4.bl \(\chi_{627}(179, \cdot)\) n/a 1888 8
627.4.bm \(\chi_{627}(68, \cdot)\) n/a 1888 8
627.4.bn \(\chi_{627}(46, \cdot)\) n/a 960 8
627.4.bo \(\chi_{627}(4, \cdot)\) n/a 2880 24
627.4.br \(\chi_{627}(13, \cdot)\) n/a 2880 24
627.4.bs \(\chi_{627}(17, \cdot)\) n/a 5664 24
627.4.bv \(\chi_{627}(14, \cdot)\) n/a 5664 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(627))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(627)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(209))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(627))\)\(^{\oplus 1}\)