Defining parameters
Level: | \( N \) | = | \( 627 = 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(115200\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(627))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 43920 | 31984 | 11936 |
Cusp forms | 42480 | 31376 | 11104 |
Eisenstein series | 1440 | 608 | 832 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(627))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(627))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(627)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(209))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(627))\)\(^{\oplus 1}\)