Properties

Label 63.10.g
Level $63$
Weight $10$
Character orbit 63.g
Rep. character $\chi_{63}(4,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $140$
Newform subspaces $1$
Sturm bound $80$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 63.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(80\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(63, [\chi])\).

Total New Old
Modular forms 148 148 0
Cusp forms 140 140 0
Eisenstein series 8 8 0

Trace form

\( 140 q + q^{2} - q^{3} - 17407 q^{4} - 5002 q^{5} - 5060 q^{6} - 343 q^{7} - 1032 q^{8} - 16051 q^{9} - 1026 q^{10} - 30826 q^{11} + 95719 q^{12} - 32438 q^{13} - 288115 q^{14} + 347087 q^{15} - 4193791 q^{16}+ \cdots - 2515013275 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.10.g.a 63.g 63.g $140$ $32.447$ None 63.10.g.a \(1\) \(-1\) \(-5002\) \(-343\) $\mathrm{SU}(2)[C_{3}]$