Defining parameters
Level: | \( N \) | = | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | = | \( 18 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(5184\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(63))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2496 | 1879 | 617 |
Cusp forms | 2400 | 1835 | 565 |
Eisenstein series | 96 | 44 | 52 |
Trace form
Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(63))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
63.18.a | \(\chi_{63}(1, \cdot)\) | 63.18.a.a | 3 | 1 |
63.18.a.b | 4 | |||
63.18.a.c | 4 | |||
63.18.a.d | 4 | |||
63.18.a.e | 5 | |||
63.18.a.f | 5 | |||
63.18.a.g | 8 | |||
63.18.a.h | 10 | |||
63.18.c | \(\chi_{63}(62, \cdot)\) | 63.18.c.a | 4 | 1 |
63.18.c.b | 40 | |||
63.18.e | \(\chi_{63}(37, \cdot)\) | n/a | 112 | 2 |
63.18.f | \(\chi_{63}(22, \cdot)\) | n/a | 204 | 2 |
63.18.g | \(\chi_{63}(4, \cdot)\) | n/a | 268 | 2 |
63.18.h | \(\chi_{63}(25, \cdot)\) | n/a | 268 | 2 |
63.18.i | \(\chi_{63}(5, \cdot)\) | n/a | 268 | 2 |
63.18.o | \(\chi_{63}(20, \cdot)\) | n/a | 268 | 2 |
63.18.p | \(\chi_{63}(17, \cdot)\) | 63.18.p.a | 92 | 2 |
63.18.s | \(\chi_{63}(47, \cdot)\) | n/a | 268 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(63))\) into lower level spaces
\( S_{18}^{\mathrm{old}}(\Gamma_1(63)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 1}\)