Properties

Label 63.18
Level 63
Weight 18
Dimension 1835
Nonzero newspaces 10
Sturm bound 5184
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 63=327 63 = 3^{2} \cdot 7
Weight: k k = 18 18
Nonzero newspaces: 10 10
Sturm bound: 51845184
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M18(Γ1(63))M_{18}(\Gamma_1(63)).

Total New Old
Modular forms 2496 1879 617
Cusp forms 2400 1835 565
Eisenstein series 96 44 52

Trace form

1835q+21q2+4548q3+1758801q41198806q5+23947782q6+22774527q7+385854783q8722836056q9+815312550q103021924282q11+2085977580q127981267576q13+60 ⁣ ⁣96q99+O(q100) 1835 q + 21 q^{2} + 4548 q^{3} + 1758801 q^{4} - 1198806 q^{5} + 23947782 q^{6} + 22774527 q^{7} + 385854783 q^{8} - 722836056 q^{9} + 815312550 q^{10} - 3021924282 q^{11} + 2085977580 q^{12} - 7981267576 q^{13}+ \cdots - 60\!\cdots\!96 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S18new(Γ1(63))S_{18}^{\mathrm{new}}(\Gamma_1(63))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
63.18.a χ63(1,)\chi_{63}(1, \cdot) 63.18.a.a 3 1
63.18.a.b 4
63.18.a.c 4
63.18.a.d 4
63.18.a.e 5
63.18.a.f 5
63.18.a.g 8
63.18.a.h 10
63.18.c χ63(62,)\chi_{63}(62, \cdot) 63.18.c.a 4 1
63.18.c.b 40
63.18.e χ63(37,)\chi_{63}(37, \cdot) n/a 112 2
63.18.f χ63(22,)\chi_{63}(22, \cdot) n/a 204 2
63.18.g χ63(4,)\chi_{63}(4, \cdot) n/a 268 2
63.18.h χ63(25,)\chi_{63}(25, \cdot) n/a 268 2
63.18.i χ63(5,)\chi_{63}(5, \cdot) n/a 268 2
63.18.o χ63(20,)\chi_{63}(20, \cdot) n/a 268 2
63.18.p χ63(17,)\chi_{63}(17, \cdot) 63.18.p.a 92 2
63.18.s χ63(47,)\chi_{63}(47, \cdot) n/a 268 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S18old(Γ1(63))S_{18}^{\mathrm{old}}(\Gamma_1(63)) into lower level spaces

S18old(Γ1(63)) S_{18}^{\mathrm{old}}(\Gamma_1(63)) \cong S18new(Γ1(1))S_{18}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS18new(Γ1(3))S_{18}^{\mathrm{new}}(\Gamma_1(3))4^{\oplus 4}\oplusS18new(Γ1(7))S_{18}^{\mathrm{new}}(\Gamma_1(7))3^{\oplus 3}\oplusS18new(Γ1(9))S_{18}^{\mathrm{new}}(\Gamma_1(9))2^{\oplus 2}\oplusS18new(Γ1(21))S_{18}^{\mathrm{new}}(\Gamma_1(21))2^{\oplus 2}