Properties

Label 63.3
Level 63
Weight 3
Dimension 197
Nonzero newspaces 10
Newform subspaces 18
Sturm bound 864
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 18 \)
Sturm bound: \(864\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(63))\).

Total New Old
Modular forms 336 243 93
Cusp forms 240 197 43
Eisenstein series 96 46 50

Trace form

\( 197 q - 3 q^{2} - 6 q^{3} + q^{4} - 18 q^{5} - 30 q^{6} - 11 q^{7} - 15 q^{8} + 6 q^{9} - 6 q^{11} - 48 q^{12} - 42 q^{13} - 135 q^{14} - 84 q^{15} - 199 q^{16} - 114 q^{17} - 60 q^{18} - 96 q^{19} - 6 q^{20}+ \cdots + 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(63))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
63.3.b \(\chi_{63}(8, \cdot)\) 63.3.b.a 4 1
63.3.d \(\chi_{63}(55, \cdot)\) 63.3.d.a 1 1
63.3.d.b 2
63.3.d.c 2
63.3.j \(\chi_{63}(11, \cdot)\) 63.3.j.a 6 2
63.3.j.b 22
63.3.k \(\chi_{63}(31, \cdot)\) 63.3.k.a 28 2
63.3.l \(\chi_{63}(13, \cdot)\) 63.3.l.a 28 2
63.3.m \(\chi_{63}(10, \cdot)\) 63.3.m.a 2 2
63.3.m.b 2
63.3.m.c 2
63.3.m.d 2
63.3.m.e 4
63.3.n \(\chi_{63}(2, \cdot)\) 63.3.n.a 6 2
63.3.n.b 22
63.3.q \(\chi_{63}(44, \cdot)\) 63.3.q.a 12 2
63.3.r \(\chi_{63}(29, \cdot)\) 63.3.r.a 24 2
63.3.t \(\chi_{63}(40, \cdot)\) 63.3.t.a 28 2

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(63))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(63)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 1}\)