Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.f (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(63, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 84 | 32 |
Cusp forms | 108 | 84 | 24 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
63.8.f.a | $42$ | $19.680$ | None | \(-8\) | \(56\) | \(-571\) | \(7203\) | ||
63.8.f.b | $42$ | $19.680$ | None | \(24\) | \(-108\) | \(429\) | \(-7203\) |
Decomposition of \(S_{8}^{\mathrm{old}}(63, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)