Properties

Label 63.8.f
Level $63$
Weight $8$
Character orbit 63.f
Rep. character $\chi_{63}(22,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $84$
Newform subspaces $2$
Sturm bound $64$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(64\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(63, [\chi])\).

Total New Old
Modular forms 116 84 32
Cusp forms 108 84 24
Eisenstein series 8 0 8

Trace form

\( 84 q + 16 q^{2} - 52 q^{3} - 2688 q^{4} - 142 q^{5} + 862 q^{6} - 11340 q^{8} - 2344 q^{9} + 13964 q^{11} - 20708 q^{12} + 10976 q^{14} - 14710 q^{15} - 172032 q^{16} + 71916 q^{17} - 34214 q^{18} - 4188 q^{19}+ \cdots + 50692292 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.8.f.a 63.f 9.c $42$ $19.680$ None 63.8.f.a \(-8\) \(56\) \(-571\) \(7203\) $\mathrm{SU}(2)[C_{3}]$
63.8.f.b 63.f 9.c $42$ $19.680$ None 63.8.f.b \(24\) \(-108\) \(429\) \(-7203\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{8}^{\mathrm{old}}(63, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)