Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(63, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 36 | 84 |
Cusp forms | 104 | 36 | 68 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
63.8.p.a | $36$ | $19.680$ | None | \(0\) | \(0\) | \(0\) | \(-2074\) |
Decomposition of \(S_{8}^{\mathrm{old}}(63, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)