Properties

Label 63.8.p
Level $63$
Weight $8$
Character orbit 63.p
Rep. character $\chi_{63}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(63, [\chi])\).

Total New Old
Modular forms 120 36 84
Cusp forms 104 36 68
Eisenstein series 16 0 16

Trace form

\( 36 q + 1024 q^{4} - 2074 q^{7} + 1248 q^{10} - 59708 q^{16} - 105330 q^{19} + 544 q^{22} - 56250 q^{25} + 556220 q^{28} + 86862 q^{31} + 591034 q^{37} - 3036324 q^{40} - 837332 q^{43} + 3896752 q^{46} + 6626454 q^{49}+ \cdots + 96093708 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.8.p.a 63.p 21.g $36$ $19.680$ None 63.8.p.a \(0\) \(0\) \(0\) \(-2074\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{8}^{\mathrm{old}}(63, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)