Properties

Label 630.2.ce
Level $630$
Weight $2$
Character orbit 630.ce
Rep. character $\chi_{630}(53,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $64$
Newform subspaces $3$
Sturm bound $288$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.ce (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(288\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(630, [\chi])\).

Total New Old
Modular forms 640 64 576
Cusp forms 512 64 448
Eisenstein series 128 0 128

Trace form

\( 64 q - 8 q^{7} + O(q^{10}) \) \( 64 q - 8 q^{7} - 8 q^{10} + 32 q^{16} + 48 q^{22} + 16 q^{25} - 8 q^{28} - 64 q^{31} + 16 q^{37} + 32 q^{43} + 32 q^{55} + 8 q^{58} - 96 q^{61} + 32 q^{67} + 24 q^{70} + 64 q^{73} + 64 q^{76} - 32 q^{82} - 64 q^{85} - 24 q^{88} + 48 q^{91} - 208 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(630, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
630.2.ce.a 630.ce 105.x $16$ $5.031$ 16.0.\(\cdots\).1 None 630.2.ce.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{4}-\beta _{13})q^{2}+(\beta _{2}+\beta _{10})q^{4}+(-2\beta _{4}+\cdots)q^{5}+\cdots\)
630.2.ce.b 630.ce 105.x $16$ $5.031$ 16.0.\(\cdots\).1 None 630.2.ce.b \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{12}]$ \(q-\beta _{11}q^{2}+\beta _{9}q^{4}+(-2\beta _{11}+\beta _{15})q^{5}+\cdots\)
630.2.ce.c 630.ce 105.x $32$ $5.031$ None 630.2.ce.c \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(630, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(630, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)