Defining parameters
Level: | \( N \) | \(=\) | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 630.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(630, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 64 | 240 |
Cusp forms | 272 | 64 | 208 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(630, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
630.2.t.a | $4$ | $5.031$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-4\) | \(2\) | \(q-\zeta_{12}q^{2}+(-\zeta_{12}+2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
630.2.t.b | $28$ | $5.031$ | None | \(0\) | \(-2\) | \(-28\) | \(-4\) | ||
630.2.t.c | $32$ | $5.031$ | None | \(0\) | \(2\) | \(32\) | \(-2\) |
Decomposition of \(S_{2}^{\mathrm{old}}(630, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(630, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)