Defining parameters
Level: | \( N \) | \(=\) | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 630.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 27 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(630))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 448 | 30 | 418 |
Cusp forms | 416 | 30 | 386 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(18\) | |||
Minus space | \(-\) | \(12\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(630))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(630))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(630)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(315))\)\(^{\oplus 2}\)