Defining parameters
Level: | \( N \) | = | \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 120 \) | ||
Sturm bound: | \(4147200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(6300))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1050240 | 424752 | 625488 |
Cusp forms | 1023361 | 421060 | 602301 |
Eisenstein series | 26879 | 3692 | 23187 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(6300))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(6300))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(6300)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 54}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 27}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(315))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(350))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(525))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(630))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(700))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1050))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1260))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1575))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6300))\)\(^{\oplus 1}\)