Defining parameters
Level: | \( N \) | \(=\) | \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6336.dd (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 528 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6336, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9472 | 768 | 8704 |
Cusp forms | 8960 | 768 | 8192 |
Eisenstein series | 512 | 0 | 512 |
Decomposition of \(S_{2}^{\mathrm{new}}(6336, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6336, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6336, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1584, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2112, [\chi])\)\(^{\oplus 2}\)