Properties

Label 637.2.w
Level $637$
Weight $2$
Character orbit 637.w
Rep. character $\chi_{637}(92,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $336$
Newform subspaces $2$
Sturm bound $130$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.w (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 2 \)
Sturm bound: \(130\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(637, [\chi])\).

Total New Old
Modular forms 396 336 60
Cusp forms 372 336 36
Eisenstein series 24 0 24

Trace form

\( 336 q - 56 q^{4} - 8 q^{5} + 16 q^{6} - 6 q^{7} - 12 q^{8} - 36 q^{9} - 20 q^{10} + 10 q^{11} + 50 q^{12} - 2 q^{13} + 48 q^{14} + 8 q^{15} - 56 q^{16} - 6 q^{17} - 20 q^{18} + 48 q^{19} + 16 q^{20} - 28 q^{21}+ \cdots + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(637, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
637.2.w.a 637.w 49.e $162$ $5.086$ None 637.2.w.a \(3\) \(0\) \(-4\) \(-15\) $\mathrm{SU}(2)[C_{7}]$
637.2.w.b 637.w 49.e $174$ $5.086$ None 637.2.w.b \(-3\) \(0\) \(-4\) \(9\) $\mathrm{SU}(2)[C_{7}]$

Decomposition of \(S_{2}^{\mathrm{old}}(637, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(637, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)