Defining parameters
Level: | \( N \) | \(=\) | \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6384.bl (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(2560\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2576 | 1728 | 848 |
Cusp forms | 2544 | 1728 | 816 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{2}^{\mathrm{new}}(6384, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6384, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)