Defining parameters
Level: | \( N \) | \(=\) | \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6384.fh (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2560\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2592 | 0 | 2592 |
Cusp forms | 2528 | 0 | 2528 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{old}}(6384, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3192, [\chi])\)\(^{\oplus 2}\)