Properties

Label 6384.2.fj
Level $6384$
Weight $2$
Character orbit 6384.fj
Rep. character $\chi_{6384}(1711,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $288$
Sturm bound $2560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6384.fj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(2560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6384, [\chi])\).

Total New Old
Modular forms 2608 288 2320
Cusp forms 2512 288 2224
Eisenstein series 96 0 96

Decomposition of \(S_{2}^{\mathrm{new}}(6384, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6384, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1596, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 2}\)