Properties

Label 6384.2.jo
Level $6384$
Weight $2$
Character orbit 6384.jo
Rep. character $\chi_{6384}(25,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $0$
Newform subspaces $0$
Sturm bound $2560$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6384.jo (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1064 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 0 \)
Sturm bound: \(2560\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6384, [\chi])\).

Total New Old
Modular forms 7776 0 7776
Cusp forms 7584 0 7584
Eisenstein series 192 0 192

Decomposition of \(S_{2}^{\mathrm{old}}(6384, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3192, [\chi])\)\(^{\oplus 2}\)