Defining parameters
Level: | \( N \) | \(=\) | \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6384.nk (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 304 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Sturm bound: | \(2560\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15456 | 5760 | 9696 |
Cusp forms | 15264 | 5760 | 9504 |
Eisenstein series | 192 | 0 | 192 |
Decomposition of \(S_{2}^{\mathrm{new}}(6384, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6384, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 2}\)