Properties

Label 6384.2.nk
Level $6384$
Weight $2$
Character orbit 6384.nk
Rep. character $\chi_{6384}(85,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $5760$
Sturm bound $2560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6384.nk (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 304 \)
Character field: \(\Q(\zeta_{36})\)
Sturm bound: \(2560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6384, [\chi])\).

Total New Old
Modular forms 15456 5760 9696
Cusp forms 15264 5760 9504
Eisenstein series 192 0 192

Decomposition of \(S_{2}^{\mathrm{new}}(6384, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6384, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 2}\)