Defining parameters
Level: | \( N \) | \(=\) | \( 640 = 2^{7} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 640.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(13\), \(37\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(640, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 24 | 88 |
Cusp forms | 80 | 24 | 56 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(640, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(640, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(640, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)