Properties

Label 648.1.j
Level $648$
Weight $1$
Character orbit 648.j
Rep. character $\chi_{648}(53,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $108$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 648.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(108\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(648, [\chi])\).

Total New Old
Modular forms 28 8 20
Cusp forms 4 4 0
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{4} + 2 q^{7} - 4 q^{10} - 2 q^{16} + 2 q^{22} - 4 q^{28} + 2 q^{31} + 2 q^{40} + 4 q^{55} - 4 q^{58} + 4 q^{64} - 2 q^{70} - 4 q^{73} - 4 q^{79} + 2 q^{88} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(648, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
648.1.j.a 648.j 72.j $2$ $0.323$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-6}) \) None 216.1.h.a \(-1\) \(0\) \(1\) \(1\) \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}+\zeta_{6}q^{5}-\zeta_{6}^{2}q^{7}+\cdots\)
648.1.j.b 648.j 72.j $2$ $0.323$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-6}) \) None 216.1.h.a \(1\) \(0\) \(-1\) \(1\) \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}-\zeta_{6}^{2}q^{7}+\cdots\)