Properties

Label 648.2
Level 648
Weight 2
Dimension 5072
Nonzero newspaces 12
Newform subspaces 66
Sturm bound 46656
Trace bound 7

Downloads

Learn more

Defining parameters

Level: N N = 648=2334 648 = 2^{3} \cdot 3^{4}
Weight: k k = 2 2
Nonzero newspaces: 12 12
Newform subspaces: 66 66
Sturm bound: 4665646656
Trace bound: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(648))M_{2}(\Gamma_1(648)).

Total New Old
Modular forms 12312 5296 7016
Cusp forms 11017 5072 5945
Eisenstein series 1295 224 1071

Trace form

5072q24q236q340q436q640q724q872q958q1027q1136q126q1324q1436q1540q1660q1736q1864q19+198q99+O(q100) 5072 q - 24 q^{2} - 36 q^{3} - 40 q^{4} - 36 q^{6} - 40 q^{7} - 24 q^{8} - 72 q^{9} - 58 q^{10} - 27 q^{11} - 36 q^{12} - 6 q^{13} - 24 q^{14} - 36 q^{15} - 40 q^{16} - 60 q^{17} - 36 q^{18} - 64 q^{19}+ \cdots - 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(648))S_{2}^{\mathrm{new}}(\Gamma_1(648))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
648.2.a χ648(1,)\chi_{648}(1, \cdot) 648.2.a.a 1 1
648.2.a.b 1
648.2.a.c 1
648.2.a.d 1
648.2.a.e 2
648.2.a.f 2
648.2.a.g 2
648.2.a.h 2
648.2.c χ648(647,)\chi_{648}(647, \cdot) None 0 1
648.2.d χ648(325,)\chi_{648}(325, \cdot) 648.2.d.a 2 1
648.2.d.b 2
648.2.d.c 2
648.2.d.d 2
648.2.d.e 4
648.2.d.f 4
648.2.d.g 4
648.2.d.h 4
648.2.d.i 4
648.2.d.j 8
648.2.d.k 8
648.2.f χ648(323,)\chi_{648}(323, \cdot) 648.2.f.a 4 1
648.2.f.b 16
648.2.f.c 24
648.2.i χ648(217,)\chi_{648}(217, \cdot) 648.2.i.a 2 2
648.2.i.b 2
648.2.i.c 2
648.2.i.d 2
648.2.i.e 2
648.2.i.f 2
648.2.i.g 2
648.2.i.h 2
648.2.i.i 4
648.2.i.j 4
648.2.l χ648(107,)\chi_{648}(107, \cdot) 648.2.l.a 4 2
648.2.l.b 4
648.2.l.c 4
648.2.l.d 8
648.2.l.e 8
648.2.l.f 16
648.2.l.g 48
648.2.n χ648(109,)\chi_{648}(109, \cdot) 648.2.n.a 4 2
648.2.n.b 4
648.2.n.c 4
648.2.n.d 4
648.2.n.e 4
648.2.n.f 4
648.2.n.g 4
648.2.n.h 4
648.2.n.i 4
648.2.n.j 4
648.2.n.k 4
648.2.n.l 4
648.2.n.m 4
648.2.n.n 8
648.2.n.o 8
648.2.n.p 8
648.2.n.q 16
648.2.o χ648(215,)\chi_{648}(215, \cdot) None 0 2
648.2.q χ648(73,)\chi_{648}(73, \cdot) 648.2.q.a 24 6
648.2.q.b 30
648.2.t χ648(37,)\chi_{648}(37, \cdot) 648.2.t.a 204 6
648.2.v χ648(35,)\chi_{648}(35, \cdot) 648.2.v.a 12 6
648.2.v.b 192
648.2.w χ648(71,)\chi_{648}(71, \cdot) None 0 6
648.2.y χ648(25,)\chi_{648}(25, \cdot) 648.2.y.a 234 18
648.2.y.b 252
648.2.bb χ648(11,)\chi_{648}(11, \cdot) 648.2.bb.a 36 18
648.2.bb.b 1872
648.2.bd χ648(13,)\chi_{648}(13, \cdot) 648.2.bd.a 1908 18
648.2.be χ648(23,)\chi_{648}(23, \cdot) None 0 18

Decomposition of S2old(Γ1(648))S_{2}^{\mathrm{old}}(\Gamma_1(648)) into lower level spaces

S2old(Γ1(648)) S_{2}^{\mathrm{old}}(\Gamma_1(648)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))20^{\oplus 20}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))15^{\oplus 15}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))16^{\oplus 16}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))10^{\oplus 10}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))5^{\oplus 5}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))8^{\oplus 8}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))9^{\oplus 9}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS2new(Γ1(27))S_{2}^{\mathrm{new}}(\Gamma_1(27))8^{\oplus 8}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))6^{\oplus 6}\oplusS2new(Γ1(54))S_{2}^{\mathrm{new}}(\Gamma_1(54))6^{\oplus 6}\oplusS2new(Γ1(72))S_{2}^{\mathrm{new}}(\Gamma_1(72))3^{\oplus 3}\oplusS2new(Γ1(81))S_{2}^{\mathrm{new}}(\Gamma_1(81))4^{\oplus 4}\oplusS2new(Γ1(108))S_{2}^{\mathrm{new}}(\Gamma_1(108))4^{\oplus 4}\oplusS2new(Γ1(162))S_{2}^{\mathrm{new}}(\Gamma_1(162))3^{\oplus 3}\oplusS2new(Γ1(216))S_{2}^{\mathrm{new}}(\Gamma_1(216))2^{\oplus 2}\oplusS2new(Γ1(324))S_{2}^{\mathrm{new}}(\Gamma_1(324))2^{\oplus 2}