Defining parameters
Level: | \( N \) | \(=\) | \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6480.bc (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 240 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(2592\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6480, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2640 | 1168 | 1472 |
Cusp forms | 2544 | 1136 | 1408 |
Eisenstein series | 96 | 32 | 64 |
Decomposition of \(S_{2}^{\mathrm{new}}(6480, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6480, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2160, [\chi])\)\(^{\oplus 2}\)