Defining parameters
Level: | \( N \) | \(=\) | \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6480.el (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 135 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Sturm bound: | \(2592\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6480, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15984 | 1320 | 14664 |
Cusp forms | 15120 | 1272 | 13848 |
Eisenstein series | 864 | 48 | 816 |
Decomposition of \(S_{2}^{\mathrm{new}}(6480, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6480, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(810, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1620, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3240, [\chi])\)\(^{\oplus 2}\)