Properties

Label 65.6.o
Level $65$
Weight $6$
Character orbit 65.o
Rep. character $\chi_{65}(2,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $132$
Newform subspaces $1$
Sturm bound $42$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.o (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(42\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(65, [\chi])\).

Total New Old
Modular forms 148 148 0
Cusp forms 132 132 0
Eisenstein series 16 16 0

Trace form

\( 132 q + 6 q^{2} - 2 q^{3} - 992 q^{4} + 94 q^{5} - 8 q^{6} - 6 q^{7} - 648 q^{8} - 660 q^{9} - 70 q^{10} + 352 q^{11} - 1456 q^{12} + 2222 q^{13} + 1852 q^{15} - 13828 q^{16} + 2650 q^{17} + 3300 q^{19}+ \cdots - 388588 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(65, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
65.6.o.a 65.o 65.o $132$ $10.425$ None 65.6.o.a \(6\) \(-2\) \(94\) \(-6\) $\mathrm{SU}(2)[C_{12}]$