Defining parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.o (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(65, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 148 | 148 | 0 |
Cusp forms | 132 | 132 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(65, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
65.6.o.a | $132$ | $10.425$ | None | \(6\) | \(-2\) | \(94\) | \(-6\) |