Properties

Label 650.2.a
Level $650$
Weight $2$
Character orbit 650.a
Rep. character $\chi_{650}(1,\cdot)$
Character field $\Q$
Dimension $19$
Newform subspaces $15$
Sturm bound $210$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(210\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(650))\).

Total New Old
Modular forms 116 19 97
Cusp forms 93 19 74
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(5\)
Plus space\(+\)\(5\)
Minus space\(-\)\(14\)

Trace form

\( 19 q - q^{2} + 2 q^{3} + 19 q^{4} + 4 q^{6} + 8 q^{7} - q^{8} + 25 q^{9} + 4 q^{11} + 2 q^{12} - q^{13} + 2 q^{14} + 19 q^{16} + 8 q^{17} - 5 q^{18} - 8 q^{19} + 12 q^{21} + 4 q^{22} - 4 q^{23} + 4 q^{24}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(650))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 13
650.2.a.a 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.a \(-1\) \(-3\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}+3q^{6}-q^{8}+6q^{9}+\cdots\)
650.2.a.b 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.b \(-1\) \(-2\) \(0\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+2q^{6}-q^{7}-q^{8}+\cdots\)
650.2.a.c 650.a 1.a $1$ $5.190$ \(\Q\) None 130.2.a.c \(-1\) \(-2\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+2q^{6}+4q^{7}-q^{8}+\cdots\)
650.2.a.d 650.a 1.a $1$ $5.190$ \(\Q\) None 130.2.a.b \(-1\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{8}-3q^{9}-q^{13}+q^{16}+\cdots\)
650.2.a.e 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.e \(-1\) \(1\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+4q^{7}-q^{8}+\cdots\)
650.2.a.f 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.f \(-1\) \(2\) \(0\) \(-5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}-2q^{6}-5q^{7}-q^{8}+\cdots\)
650.2.a.g 650.a 1.a $1$ $5.190$ \(\Q\) None 26.2.a.b \(-1\) \(3\) \(0\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}+q^{4}-3q^{6}-q^{7}-q^{8}+\cdots\)
650.2.a.h 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.f \(1\) \(-2\) \(0\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-2q^{6}+5q^{7}+q^{8}+\cdots\)
650.2.a.i 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.e \(1\) \(-1\) \(0\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}-4q^{7}+q^{8}+\cdots\)
650.2.a.j 650.a 1.a $1$ $5.190$ \(\Q\) None 26.2.a.a \(1\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\)
650.2.a.k 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.b \(1\) \(2\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}+q^{7}+q^{8}+\cdots\)
650.2.a.l 650.a 1.a $1$ $5.190$ \(\Q\) None 130.2.a.a \(1\) \(2\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}+4q^{7}+q^{8}+\cdots\)
650.2.a.m 650.a 1.a $1$ $5.190$ \(\Q\) None 650.2.a.a \(1\) \(3\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}+q^{4}+3q^{6}+q^{8}+6q^{9}+\cdots\)
650.2.a.n 650.a 1.a $3$ $5.190$ 3.3.940.1 None 130.2.b.a \(-3\) \(0\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}+(1+\beta _{1}+\cdots)q^{7}+\cdots\)
650.2.a.o 650.a 1.a $3$ $5.190$ 3.3.940.1 None 130.2.b.a \(3\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}+(-1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(650))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(650)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 2}\)