Defining parameters
Level: | \( N \) | \(=\) | \( 66 = 2 \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 66.e (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(66, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 8 | 56 |
Cusp forms | 32 | 8 | 24 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(66, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
66.2.e.a | $4$ | $0.527$ | \(\Q(\zeta_{10})\) | None | \(-1\) | \(1\) | \(8\) | \(-6\) | \(q-\zeta_{10}q^{2}+\zeta_{10}^{3}q^{3}+\zeta_{10}^{2}q^{4}+(2+\cdots)q^{5}+\cdots\) |
66.2.e.b | $4$ | $0.527$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(-1\) | \(0\) | \(-2\) | \(q+\zeta_{10}q^{2}-\zeta_{10}^{3}q^{3}+\zeta_{10}^{2}q^{4}+(-2+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(66, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(66, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)