Defining parameters
Level: | \( N \) | \(=\) | \( 66 = 2 \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 66.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(66))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 4 | 36 |
Cusp forms | 32 | 4 | 28 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | ||
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(66))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 11 | |||||||
66.4.a.a | $1$ | $3.894$ | \(\Q\) | None | \(-2\) | \(3\) | \(0\) | \(14\) | $+$ | $-$ | $-$ | \(q-2q^{2}+3q^{3}+4q^{4}-6q^{6}+14q^{7}+\cdots\) | |
66.4.a.b | $1$ | $3.894$ | \(\Q\) | None | \(2\) | \(-3\) | \(10\) | \(16\) | $-$ | $+$ | $-$ | \(q+2q^{2}-3q^{3}+4q^{4}+10q^{5}-6q^{6}+\cdots\) | |
66.4.a.c | $2$ | $3.894$ | \(\Q(\sqrt{97}) \) | None | \(4\) | \(6\) | \(10\) | \(-2\) | $-$ | $-$ | $+$ | \(q+2q^{2}+3q^{3}+4q^{4}+(5-\beta )q^{5}+6q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(66))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(66)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)