Properties

Label 66.4.a
Level $66$
Weight $4$
Character orbit 66.a
Rep. character $\chi_{66}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $3$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 66.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(66))\).

Total New Old
Modular forms 40 4 36
Cusp forms 32 4 28
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeDim
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(0\)

Trace form

\( 4 q + 4 q^{2} + 6 q^{3} + 16 q^{4} + 20 q^{5} + 28 q^{7} + 16 q^{8} + 36 q^{9} + 40 q^{10} + 24 q^{12} + 104 q^{13} + 64 q^{16} - 60 q^{17} + 36 q^{18} - 148 q^{19} + 80 q^{20} - 12 q^{21} - 44 q^{22} - 412 q^{23}+ \cdots + 2244 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(66))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
66.4.a.a 66.a 1.a $1$ $3.894$ \(\Q\) None 66.4.a.a \(-2\) \(3\) \(0\) \(14\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}-6q^{6}+14q^{7}+\cdots\)
66.4.a.b 66.a 1.a $1$ $3.894$ \(\Q\) None 66.4.a.b \(2\) \(-3\) \(10\) \(16\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}+10q^{5}-6q^{6}+\cdots\)
66.4.a.c 66.a 1.a $2$ $3.894$ \(\Q(\sqrt{97}) \) None 66.4.a.c \(4\) \(6\) \(10\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}+(5-\beta )q^{5}+6q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(66))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(66)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)