Defining parameters
Level: | \( N \) | \(=\) | \( 665 = 5 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 665.l (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 133 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(665, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 104 | 64 |
Cusp forms | 152 | 104 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(665, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
665.2.l.a | $2$ | $5.310$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(1\) | \(-2\) | \(-4\) | \(q-q^{2}+\zeta_{6}q^{3}-q^{4}-q^{5}-\zeta_{6}q^{6}+\cdots\) |
665.2.l.b | $2$ | $5.310$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(1\) | \(-2\) | \(-4\) | \(q-q^{2}+\zeta_{6}q^{3}-q^{4}-q^{5}-\zeta_{6}q^{6}+\cdots\) |
665.2.l.c | $2$ | $5.310$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(1\) | \(2\) | \(-4\) | \(q+q^{2}+\zeta_{6}q^{3}-q^{4}+q^{5}+\zeta_{6}q^{6}+\cdots\) |
665.2.l.d | $2$ | $5.310$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(3\) | \(2\) | \(4\) | \(q+q^{2}+3\zeta_{6}q^{3}-q^{4}+q^{5}+3\zeta_{6}q^{6}+\cdots\) |
665.2.l.e | $4$ | $5.310$ | \(\Q(\sqrt{-3}, \sqrt{7})\) | None | \(0\) | \(2\) | \(4\) | \(-8\) | \(q+\beta _{3}q^{2}-\beta _{2}q^{3}+5q^{4}+q^{5}+(\beta _{1}+\cdots)q^{6}+\cdots\) |
665.2.l.f | $44$ | $5.310$ | None | \(0\) | \(-8\) | \(44\) | \(5\) | ||
665.2.l.g | $48$ | $5.310$ | None | \(0\) | \(-4\) | \(-48\) | \(9\) |
Decomposition of \(S_{2}^{\mathrm{old}}(665, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)