Properties

Label 665.2.l
Level $665$
Weight $2$
Character orbit 665.l
Rep. character $\chi_{665}(11,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $104$
Newform subspaces $7$
Sturm bound $160$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.l (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(160\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(665, [\chi])\).

Total New Old
Modular forms 168 104 64
Cusp forms 152 104 48
Eisenstein series 16 0 16

Trace form

\( 104 q - 4 q^{3} + 96 q^{4} - 2 q^{7} - 48 q^{9} + O(q^{10}) \) \( 104 q - 4 q^{3} + 96 q^{4} - 2 q^{7} - 48 q^{9} + 8 q^{10} - 2 q^{11} - 8 q^{12} - 16 q^{13} - 12 q^{14} + 80 q^{16} - 4 q^{17} - 6 q^{19} + 6 q^{21} - 4 q^{22} + 104 q^{25} - 6 q^{26} + 32 q^{27} - 32 q^{28} - 4 q^{29} - 10 q^{31} + 20 q^{32} + 32 q^{33} - 8 q^{34} - 4 q^{35} - 52 q^{36} + 16 q^{37} - 56 q^{38} + 18 q^{39} + 24 q^{40} - 6 q^{41} - 22 q^{42} - 2 q^{43} - 28 q^{44} + 18 q^{46} + 12 q^{47} - 118 q^{48} - 26 q^{49} - 16 q^{51} - 44 q^{52} + 8 q^{53} - 112 q^{54} - 34 q^{56} - 22 q^{57} - 22 q^{58} - 18 q^{59} - 8 q^{61} + 38 q^{62} + 18 q^{63} + 72 q^{64} + 12 q^{65} - 8 q^{66} + 4 q^{67} - 78 q^{68} - 24 q^{69} - 24 q^{70} + 72 q^{72} + 2 q^{73} + 42 q^{74} - 4 q^{75} + 38 q^{76} + 50 q^{77} - 76 q^{78} - 40 q^{79} - 28 q^{81} - 42 q^{82} + 12 q^{83} - 92 q^{84} - 28 q^{86} - 34 q^{87} - 12 q^{88} + 32 q^{89} - 38 q^{90} - 46 q^{91} + 68 q^{92} + 44 q^{93} + 4 q^{94} - 12 q^{95} + 104 q^{96} - 66 q^{97} + 160 q^{98} - 92 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(665, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
665.2.l.a 665.l 133.h $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.k.c \(-2\) \(1\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+\zeta_{6}q^{3}-q^{4}-q^{5}-\zeta_{6}q^{6}+\cdots\)
665.2.l.b 665.l 133.h $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.k.d \(-2\) \(1\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+\zeta_{6}q^{3}-q^{4}-q^{5}-\zeta_{6}q^{6}+\cdots\)
665.2.l.c 665.l 133.h $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.k.b \(2\) \(1\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+\zeta_{6}q^{3}-q^{4}+q^{5}+\zeta_{6}q^{6}+\cdots\)
665.2.l.d 665.l 133.h $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.k.a \(2\) \(3\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+3\zeta_{6}q^{3}-q^{4}+q^{5}+3\zeta_{6}q^{6}+\cdots\)
665.2.l.e 665.l 133.h $4$ $5.310$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 665.2.k.e \(0\) \(2\) \(4\) \(-8\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}-\beta _{2}q^{3}+5q^{4}+q^{5}+(\beta _{1}+\cdots)q^{6}+\cdots\)
665.2.l.f 665.l 133.h $44$ $5.310$ None 665.2.k.f \(0\) \(-8\) \(44\) \(5\) $\mathrm{SU}(2)[C_{3}]$
665.2.l.g 665.l 133.h $48$ $5.310$ None 665.2.k.g \(0\) \(-4\) \(-48\) \(9\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(665, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)