Properties

Label 665.2.l
Level 665665
Weight 22
Character orbit 665.l
Rep. character χ665(11,)\chi_{665}(11,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 104104
Newform subspaces 77
Sturm bound 160160
Trace bound 1111

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 665=5719 665 = 5 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 665.l (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 133 133
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 7 7
Sturm bound: 160160
Trace bound: 1111
Distinguishing TpT_p: 22, 33, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(665,[χ])M_{2}(665, [\chi]).

Total New Old
Modular forms 168 104 64
Cusp forms 152 104 48
Eisenstein series 16 0 16

Trace form

104q4q3+96q42q748q9+8q102q118q1216q1312q14+80q164q176q19+6q214q22+104q256q26+32q2732q28+92q99+O(q100) 104 q - 4 q^{3} + 96 q^{4} - 2 q^{7} - 48 q^{9} + 8 q^{10} - 2 q^{11} - 8 q^{12} - 16 q^{13} - 12 q^{14} + 80 q^{16} - 4 q^{17} - 6 q^{19} + 6 q^{21} - 4 q^{22} + 104 q^{25} - 6 q^{26} + 32 q^{27} - 32 q^{28}+ \cdots - 92 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(665,[χ])S_{2}^{\mathrm{new}}(665, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
665.2.l.a 665.l 133.h 22 5.3105.310 Q(3)\Q(\sqrt{-3}) None 665.2.k.c 2-2 11 2-2 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qq2+ζ6q3q4q5ζ6q6+q-q^{2}+\zeta_{6}q^{3}-q^{4}-q^{5}-\zeta_{6}q^{6}+\cdots
665.2.l.b 665.l 133.h 22 5.3105.310 Q(3)\Q(\sqrt{-3}) None 665.2.k.d 2-2 11 2-2 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qq2+ζ6q3q4q5ζ6q6+q-q^{2}+\zeta_{6}q^{3}-q^{4}-q^{5}-\zeta_{6}q^{6}+\cdots
665.2.l.c 665.l 133.h 22 5.3105.310 Q(3)\Q(\sqrt{-3}) None 665.2.k.b 22 11 22 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+q2+ζ6q3q4+q5+ζ6q6+q+q^{2}+\zeta_{6}q^{3}-q^{4}+q^{5}+\zeta_{6}q^{6}+\cdots
665.2.l.d 665.l 133.h 22 5.3105.310 Q(3)\Q(\sqrt{-3}) None 665.2.k.a 22 33 22 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+q2+3ζ6q3q4+q5+3ζ6q6+q+q^{2}+3\zeta_{6}q^{3}-q^{4}+q^{5}+3\zeta_{6}q^{6}+\cdots
665.2.l.e 665.l 133.h 44 5.3105.310 Q(3,7)\Q(\sqrt{-3}, \sqrt{7}) None 665.2.k.e 00 22 44 8-8 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β3q2β2q3+5q4+q5+(β1+)q6+q+\beta _{3}q^{2}-\beta _{2}q^{3}+5q^{4}+q^{5}+(\beta _{1}+\cdots)q^{6}+\cdots
665.2.l.f 665.l 133.h 4444 5.3105.310 None 665.2.k.f 00 8-8 4444 55 SU(2)[C3]\mathrm{SU}(2)[C_{3}]
665.2.l.g 665.l 133.h 4848 5.3105.310 None 665.2.k.g 00 4-4 48-48 99 SU(2)[C3]\mathrm{SU}(2)[C_{3}]

Decomposition of S2old(665,[χ])S_{2}^{\mathrm{old}}(665, [\chi]) into lower level spaces

S2old(665,[χ]) S_{2}^{\mathrm{old}}(665, [\chi]) \simeq S2new(133,[χ])S_{2}^{\mathrm{new}}(133, [\chi])2^{\oplus 2}