Defining parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 16 | 128 |
Cusp forms | 112 | 16 | 96 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(672, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
672.2.b.a | $8$ | $5.366$ | 8.0.836829184.2 | None | \(0\) | \(-8\) | \(0\) | \(-4\) | \(q-q^{3}+\beta _{1}q^{5}+\beta _{4}q^{7}+q^{9}+(-\beta _{2}+\cdots)q^{11}+\cdots\) |
672.2.b.b | $8$ | $5.366$ | 8.0.836829184.2 | None | \(0\) | \(8\) | \(0\) | \(4\) | \(q+q^{3}-\beta _{1}q^{5}+\beta _{2}q^{7}+q^{9}+(-\beta _{2}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(672, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)