Defining parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.bd (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 168 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 72 | 216 |
Cusp forms | 224 | 56 | 168 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(672, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
672.2.bd.a | $56$ | $5.366$ | None | \(0\) | \(2\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(672, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)