Properties

Label 672.4
Level 672
Weight 4
Dimension 14804
Nonzero newspaces 24
Sturm bound 98304
Trace bound 14

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(98304\)
Trace bound: \(14\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(672))\).

Total New Old
Modular forms 37632 15004 22628
Cusp forms 36096 14804 21292
Eisenstein series 1536 200 1336

Trace form

\( 14804 q - 14 q^{3} - 32 q^{4} + 8 q^{5} - 16 q^{6} + 16 q^{9} + 448 q^{10} - 112 q^{12} - 504 q^{13} - 416 q^{14} - 140 q^{15} - 1232 q^{16} - 416 q^{17} - 160 q^{18} - 76 q^{19} + 320 q^{20} - 36 q^{21}+ \cdots + 17740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(672))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
672.4.a \(\chi_{672}(1, \cdot)\) 672.4.a.a 1 1
672.4.a.b 1
672.4.a.c 1
672.4.a.d 1
672.4.a.e 2
672.4.a.f 2
672.4.a.g 2
672.4.a.h 2
672.4.a.i 2
672.4.a.j 2
672.4.a.k 2
672.4.a.l 2
672.4.a.m 2
672.4.a.n 2
672.4.a.o 3
672.4.a.p 3
672.4.a.q 3
672.4.a.r 3
672.4.b \(\chi_{672}(223, \cdot)\) 672.4.b.a 24 1
672.4.b.b 24
672.4.c \(\chi_{672}(337, \cdot)\) 672.4.c.a 16 1
672.4.c.b 20
672.4.h \(\chi_{672}(575, \cdot)\) 672.4.h.a 36 1
672.4.h.b 36
672.4.i \(\chi_{672}(209, \cdot)\) 672.4.i.a 4 1
672.4.i.b 8
672.4.i.c 80
672.4.j \(\chi_{672}(239, \cdot)\) 672.4.j.a 72 1
672.4.k \(\chi_{672}(545, \cdot)\) 672.4.k.a 8 1
672.4.k.b 8
672.4.k.c 16
672.4.k.d 16
672.4.k.e 48
672.4.p \(\chi_{672}(559, \cdot)\) 672.4.p.a 48 1
672.4.q \(\chi_{672}(193, \cdot)\) 672.4.q.a 2 2
672.4.q.b 2
672.4.q.c 4
672.4.q.d 4
672.4.q.e 6
672.4.q.f 6
672.4.q.g 10
672.4.q.h 10
672.4.q.i 12
672.4.q.j 12
672.4.q.k 14
672.4.q.l 14
672.4.s \(\chi_{672}(71, \cdot)\) None 0 2
672.4.u \(\chi_{672}(55, \cdot)\) None 0 2
672.4.w \(\chi_{672}(169, \cdot)\) None 0 2
672.4.y \(\chi_{672}(41, \cdot)\) None 0 2
672.4.bb \(\chi_{672}(271, \cdot)\) 672.4.bb.a 96 2
672.4.bc \(\chi_{672}(257, \cdot)\) n/a 192 2
672.4.bd \(\chi_{672}(431, \cdot)\) n/a 184 2
672.4.bi \(\chi_{672}(17, \cdot)\) n/a 184 2
672.4.bj \(\chi_{672}(95, \cdot)\) n/a 192 2
672.4.bk \(\chi_{672}(529, \cdot)\) 672.4.bk.a 96 2
672.4.bl \(\chi_{672}(31, \cdot)\) 672.4.bl.a 48 2
672.4.bl.b 48
672.4.bo \(\chi_{672}(125, \cdot)\) n/a 1520 4
672.4.bq \(\chi_{672}(85, \cdot)\) n/a 576 4
672.4.bs \(\chi_{672}(155, \cdot)\) n/a 1152 4
672.4.bu \(\chi_{672}(139, \cdot)\) n/a 768 4
672.4.bw \(\chi_{672}(89, \cdot)\) None 0 4
672.4.by \(\chi_{672}(25, \cdot)\) None 0 4
672.4.ca \(\chi_{672}(103, \cdot)\) None 0 4
672.4.cc \(\chi_{672}(23, \cdot)\) None 0 4
672.4.cf \(\chi_{672}(19, \cdot)\) n/a 1536 8
672.4.ch \(\chi_{672}(11, \cdot)\) n/a 3040 8
672.4.cj \(\chi_{672}(37, \cdot)\) n/a 1536 8
672.4.cl \(\chi_{672}(5, \cdot)\) n/a 3040 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(672))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(672)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(672))\)\(^{\oplus 1}\)