Defining parameters
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 2 | 22 |
Cusp forms | 6 | 2 | 4 |
Eisenstein series | 18 | 0 | 18 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(675, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
675.1.d.a | $2$ | $0.337$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-q^{4}-i q^{7}-2 i q^{13}+q^{16}+q^{19}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(675, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(675, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)