Properties

Label 675.1.d
Level $675$
Weight $1$
Character orbit 675.d
Rep. character $\chi_{675}(674,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $90$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 675.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(90\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(675, [\chi])\).

Total New Old
Modular forms 24 2 22
Cusp forms 6 2 4
Eisenstein series 18 0 18

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - 2 q^{4} + 2 q^{16} + 2 q^{19} - 2 q^{31} - 2 q^{61} - 2 q^{64} - 2 q^{76} + 2 q^{79} - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(675, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
675.1.d.a 675.d 15.d $2$ $0.337$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 675.1.c.a \(0\) \(0\) \(0\) \(0\) \(q-q^{4}-i q^{7}-2 i q^{13}+q^{16}+q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(675, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(675, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)