Properties

Label 675.2.u
Level 675675
Weight 22
Character orbit 675.u
Rep. character χ675(49,)\chi_{675}(49,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 312312
Newform subspaces 55
Sturm bound 180180
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 675=3352 675 = 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 675.u (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 135 135
Character field: Q(ζ18)\Q(\zeta_{18})
Newform subspaces: 5 5
Sturm bound: 180180
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(675,[χ])M_{2}(675, [\chi]).

Total New Old
Modular forms 576 336 240
Cusp forms 504 312 192
Eisenstein series 72 24 48

Trace form

312q+12q424q6+24q924q11+24q14+6q1948q216q2496q26+48q29+6q3196q36+30q3912q41102q446q46+48q49+24q99+O(q100) 312 q + 12 q^{4} - 24 q^{6} + 24 q^{9} - 24 q^{11} + 24 q^{14} + 6 q^{19} - 48 q^{21} - 6 q^{24} - 96 q^{26} + 48 q^{29} + 6 q^{31} - 96 q^{36} + 30 q^{39} - 12 q^{41} - 102 q^{44} - 6 q^{46} + 48 q^{49}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(675,[χ])S_{2}^{\mathrm{new}}(675, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
675.2.u.a 675.u 135.p 1212 5.3905.390 Q(ζ36)\Q(\zeta_{36}) None 675.2.l.a 00 00 00 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}] q+(ζ365+ζ367ζ369)q2+(2ζ365+)q3+q+(-\zeta_{36}^{5}+\zeta_{36}^{7}-\zeta_{36}^{9})q^{2}+(-2\zeta_{36}^{5}+\cdots)q^{3}+\cdots
675.2.u.b 675.u 135.p 2424 5.3905.390 None 27.2.e.a 00 00 00 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}]
675.2.u.c 675.u 135.p 6060 5.3905.390 None 135.2.k.a 00 00 00 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}]
675.2.u.d 675.u 135.p 8484 5.3905.390 None 135.2.k.b 00 00 00 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}]
675.2.u.e 675.u 135.p 132132 5.3905.390 None 675.2.l.f 00 00 00 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}]

Decomposition of S2old(675,[χ])S_{2}^{\mathrm{old}}(675, [\chi]) into lower level spaces

S2old(675,[χ]) S_{2}^{\mathrm{old}}(675, [\chi]) \simeq S2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi])2^{\oplus 2}