Properties

Label 684.2.bb
Level $684$
Weight $2$
Character orbit 684.bb
Rep. character $\chi_{684}(293,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $40$
Newform subspaces $2$
Sturm bound $240$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(240\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 252 40 212
Cusp forms 228 40 188
Eisenstein series 24 0 24

Trace form

\( 40 q + q^{7} - 2 q^{9} + 3 q^{11} - 3 q^{15} + 3 q^{17} - q^{19} + 20 q^{25} - 9 q^{27} - 9 q^{29} + 6 q^{31} + 27 q^{33} - 9 q^{39} - 3 q^{41} + 8 q^{43} - 4 q^{45} + 12 q^{47} - 21 q^{49} + 9 q^{51}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.bb.a 684.bb 171.t $2$ $5.462$ \(\Q(\sqrt{-3}) \) None 684.2.n.a \(0\) \(-3\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\zeta_{6})q^{3}-\zeta_{6}q^{7}+(3-3\zeta_{6})q^{9}+\cdots\)
684.2.bb.b 684.bb 171.t $38$ $5.462$ None 684.2.n.b \(0\) \(3\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)