Properties

Label 684.2.bq
Level $684$
Weight $2$
Character orbit 684.bq
Rep. character $\chi_{684}(85,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $120$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bq (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 756 120 636
Cusp forms 684 120 564
Eisenstein series 72 0 72

Trace form

\( 120 q - 3 q^{3} - 3 q^{9} + 3 q^{13} - 3 q^{15} - 9 q^{17} + 3 q^{19} - 24 q^{23} + 3 q^{27} - 9 q^{29} - 12 q^{33} + 18 q^{35} - 30 q^{39} + 3 q^{41} + 12 q^{43} + 9 q^{45} + 18 q^{47} + 120 q^{49} + 3 q^{51}+ \cdots + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.bq.a 684.bq 171.w $120$ $5.462$ None 684.2.bp.a \(0\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)