Properties

Label 684.2.ch
Level $684$
Weight $2$
Character orbit 684.ch
Rep. character $\chi_{684}(47,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $696$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.ch (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 684 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 744 744 0
Cusp forms 696 696 0
Eisenstein series 48 48 0

Trace form

\( 696 q - 9 q^{2} - 3 q^{4} - 18 q^{5} - 6 q^{6} - 12 q^{10} - 3 q^{12} - 6 q^{13} - 9 q^{14} - 3 q^{16} - 12 q^{18} - 18 q^{20} - 30 q^{21} - 27 q^{22} - 18 q^{24} - 6 q^{25} - 72 q^{26} - 18 q^{29} + 63 q^{30}+ \cdots - 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.ch.a 684.ch 684.bh $696$ $5.462$ None 684.2.bs.a \(-9\) \(0\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{18}]$