Defining parameters
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 36 | 216 |
Cusp forms | 228 | 36 | 192 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
684.2.i.a | $2$ | $5.462$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(5\) | \(q+(1-2\zeta_{6})q^{3}-3\zeta_{6}q^{5}+(5-5\zeta_{6})q^{7}+\cdots\) |
684.2.i.b | $2$ | $5.462$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(1\) | \(-3\) | \(q+(1-2\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-3+3\zeta_{6})q^{7}+\cdots\) |
684.2.i.c | $16$ | $5.462$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-1\) | \(2\) | \(3\) | \(q-\beta _{1}q^{3}-\beta _{13}q^{5}+(-\beta _{3}+\beta _{8}+\beta _{11}+\cdots)q^{7}+\cdots\) |
684.2.i.d | $16$ | $5.462$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(-1\) | \(6\) | \(-5\) | \(q+(\beta _{2}+\beta _{13})q^{3}+(\beta _{7}+\beta _{8})q^{5}+(-1+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)