Properties

Label 684.2.i
Level $684$
Weight $2$
Character orbit 684.i
Rep. character $\chi_{684}(229,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $36$
Newform subspaces $4$
Sturm bound $240$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(240\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 252 36 216
Cusp forms 228 36 192
Eisenstein series 24 0 24

Trace form

\( 36 q - 2 q^{3} + 6 q^{5} + 10 q^{9} + 8 q^{11} + 4 q^{15} - 16 q^{17} - 18 q^{21} + 2 q^{23} - 12 q^{25} - 2 q^{27} - 12 q^{29} + 6 q^{31} + 14 q^{33} - 12 q^{35} - 12 q^{37} + 6 q^{39} - 16 q^{41} - 16 q^{45}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.i.a 684.i 9.c $2$ $5.462$ \(\Q(\sqrt{-3}) \) None 684.2.i.a \(0\) \(0\) \(-3\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-2\zeta_{6})q^{3}-3\zeta_{6}q^{5}+(5-5\zeta_{6})q^{7}+\cdots\)
684.2.i.b 684.i 9.c $2$ $5.462$ \(\Q(\sqrt{-3}) \) None 684.2.i.b \(0\) \(0\) \(1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-2\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-3+3\zeta_{6})q^{7}+\cdots\)
684.2.i.c 684.i 9.c $16$ $5.462$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 684.2.i.c \(0\) \(-1\) \(2\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}-\beta _{13}q^{5}+(-\beta _{3}+\beta _{8}+\beta _{11}+\cdots)q^{7}+\cdots\)
684.2.i.d 684.i 9.c $16$ $5.462$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 684.2.i.d \(0\) \(-1\) \(6\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{13})q^{3}+(\beta _{7}+\beta _{8})q^{5}+(-1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)