Defining parameters
Level: | \( N \) | \(=\) | \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6900.cg (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 460 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Sturm bound: | \(2880\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6900, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14640 | 4320 | 10320 |
Cusp forms | 14160 | 4320 | 9840 |
Eisenstein series | 480 | 0 | 480 |
Decomposition of \(S_{2}^{\mathrm{new}}(6900, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6900, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2300, [\chi])\)\(^{\oplus 2}\)