Properties

Label 693.2.i.i.298.3
Level $693$
Weight $2$
Character 693.298
Analytic conductor $5.534$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(100,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 298.3
Root \(0.643668 + 1.11487i\) of defining polynomial
Character \(\chi\) \(=\) 693.298
Dual form 693.2.i.i.100.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.643668 + 1.11487i) q^{2} +(0.171383 - 0.296844i) q^{4} +(1.95872 + 3.39260i) q^{5} +(-0.234193 + 2.63537i) q^{7} +3.01593 q^{8} +(-2.52153 + 4.36742i) q^{10} +(-0.500000 + 0.866025i) q^{11} -3.04306 q^{13} +(-3.08882 + 1.43521i) q^{14} +(1.59849 + 2.76866i) q^{16} +(1.98643 - 3.44061i) q^{17} +(-3.79530 - 6.57365i) q^{19} +1.34277 q^{20} -1.28734 q^{22} +(2.25572 + 3.90703i) q^{23} +(-5.17316 + 8.96018i) q^{25} +(-1.95872 - 3.39260i) q^{26} +(0.742157 + 0.521177i) q^{28} -3.75572 q^{29} +(3.37168 - 5.83991i) q^{31} +(0.958135 - 1.65954i) q^{32} +5.11442 q^{34} +(-9.39946 + 4.36742i) q^{35} +(-0.171383 - 0.296844i) q^{37} +(4.88582 - 8.46250i) q^{38} +(5.90735 + 10.2318i) q^{40} +2.79182 q^{41} +11.1222 q^{43} +(0.171383 + 0.296844i) q^{44} +(-2.90387 + 5.02965i) q^{46} +(0.828617 + 1.43521i) q^{47} +(-6.89031 - 1.23437i) q^{49} -13.3192 q^{50} +(-0.521529 + 0.903315i) q^{52} +(-6.47016 + 11.2067i) q^{53} -3.91744 q^{55} +(-0.706310 + 7.94807i) q^{56} +(-2.41744 - 4.18713i) q^{58} +(-1.83039 + 3.17034i) q^{59} +(0.234193 + 0.405635i) q^{61} +8.68096 q^{62} +8.86084 q^{64} +(-5.96050 - 10.3239i) q^{65} +(1.28911 - 2.23281i) q^{67} +(-0.680883 - 1.17932i) q^{68} +(-10.9192 - 7.66797i) q^{70} +5.00355 q^{71} +(4.36878 - 7.56694i) q^{73} +(0.220628 - 0.382139i) q^{74} -2.60180 q^{76} +(-2.16520 - 1.52050i) q^{77} +(-0.359814 - 0.623216i) q^{79} +(-6.26198 + 10.8461i) q^{80} +(1.79700 + 3.11250i) q^{82} +11.5976 q^{83} +15.5635 q^{85} +(7.15901 + 12.3998i) q^{86} +(-1.50796 + 2.61187i) q^{88} +(-6.17764 - 10.7000i) q^{89} +(0.712664 - 8.01957i) q^{91} +1.54637 q^{92} +(-1.06671 + 1.84759i) q^{94} +(14.8679 - 25.7519i) q^{95} -13.1687 q^{97} +(-3.05891 - 8.47629i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8} - 10 q^{10} - 4 q^{11} - 4 q^{13} + 4 q^{14} - 12 q^{16} + 2 q^{17} - 4 q^{22} + 4 q^{23} - 4 q^{25} - 4 q^{26} - 22 q^{28} - 16 q^{29} + 12 q^{31}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.643668 + 1.11487i 0.455142 + 0.788329i 0.998696 0.0510450i \(-0.0162552\pi\)
−0.543554 + 0.839374i \(0.682922\pi\)
\(3\) 0 0
\(4\) 0.171383 0.296844i 0.0856916 0.148422i
\(5\) 1.95872 + 3.39260i 0.875966 + 1.51722i 0.855730 + 0.517422i \(0.173108\pi\)
0.0202354 + 0.999795i \(0.493558\pi\)
\(6\) 0 0
\(7\) −0.234193 + 2.63537i −0.0885168 + 0.996075i
\(8\) 3.01593 1.06629
\(9\) 0 0
\(10\) −2.52153 + 4.36742i −0.797378 + 1.38110i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) −3.04306 −0.843993 −0.421996 0.906598i \(-0.638670\pi\)
−0.421996 + 0.906598i \(0.638670\pi\)
\(14\) −3.08882 + 1.43521i −0.825522 + 0.383575i
\(15\) 0 0
\(16\) 1.59849 + 2.76866i 0.399622 + 0.692166i
\(17\) 1.98643 3.44061i 0.481781 0.834469i −0.518000 0.855380i \(-0.673323\pi\)
0.999781 + 0.0209111i \(0.00665670\pi\)
\(18\) 0 0
\(19\) −3.79530 6.57365i −0.870701 1.50810i −0.861272 0.508144i \(-0.830332\pi\)
−0.00942900 0.999956i \(-0.503001\pi\)
\(20\) 1.34277 0.300252
\(21\) 0 0
\(22\) −1.28734 −0.274461
\(23\) 2.25572 + 3.90703i 0.470351 + 0.814671i 0.999425 0.0339042i \(-0.0107941\pi\)
−0.529074 + 0.848575i \(0.677461\pi\)
\(24\) 0 0
\(25\) −5.17316 + 8.96018i −1.03463 + 1.79204i
\(26\) −1.95872 3.39260i −0.384136 0.665344i
\(27\) 0 0
\(28\) 0.742157 + 0.521177i 0.140254 + 0.0984931i
\(29\) −3.75572 −0.697420 −0.348710 0.937231i \(-0.613380\pi\)
−0.348710 + 0.937231i \(0.613380\pi\)
\(30\) 0 0
\(31\) 3.37168 5.83991i 0.605571 1.04888i −0.386390 0.922335i \(-0.626278\pi\)
0.991961 0.126544i \(-0.0403885\pi\)
\(32\) 0.958135 1.65954i 0.169376 0.293368i
\(33\) 0 0
\(34\) 5.11442 0.877115
\(35\) −9.39946 + 4.36742i −1.58880 + 0.738228i
\(36\) 0 0
\(37\) −0.171383 0.296844i −0.0281752 0.0488009i 0.851594 0.524202i \(-0.175636\pi\)
−0.879769 + 0.475401i \(0.842303\pi\)
\(38\) 4.88582 8.46250i 0.792585 1.37280i
\(39\) 0 0
\(40\) 5.90735 + 10.2318i 0.934035 + 1.61780i
\(41\) 2.79182 0.436009 0.218004 0.975948i \(-0.430045\pi\)
0.218004 + 0.975948i \(0.430045\pi\)
\(42\) 0 0
\(43\) 11.1222 1.69612 0.848061 0.529899i \(-0.177770\pi\)
0.848061 + 0.529899i \(0.177770\pi\)
\(44\) 0.171383 + 0.296844i 0.0258370 + 0.0447510i
\(45\) 0 0
\(46\) −2.90387 + 5.02965i −0.428153 + 0.741582i
\(47\) 0.828617 + 1.43521i 0.120866 + 0.209346i 0.920109 0.391661i \(-0.128099\pi\)
−0.799243 + 0.601008i \(0.794766\pi\)
\(48\) 0 0
\(49\) −6.89031 1.23437i −0.984330 0.176339i
\(50\) −13.3192 −1.88362
\(51\) 0 0
\(52\) −0.521529 + 0.903315i −0.0723231 + 0.125267i
\(53\) −6.47016 + 11.2067i −0.888745 + 1.53935i −0.0473857 + 0.998877i \(0.515089\pi\)
−0.841360 + 0.540476i \(0.818244\pi\)
\(54\) 0 0
\(55\) −3.91744 −0.528227
\(56\) −0.706310 + 7.94807i −0.0943847 + 1.06211i
\(57\) 0 0
\(58\) −2.41744 4.18713i −0.317425 0.549797i
\(59\) −1.83039 + 3.17034i −0.238297 + 0.412743i −0.960226 0.279225i \(-0.909923\pi\)
0.721929 + 0.691967i \(0.243256\pi\)
\(60\) 0 0
\(61\) 0.234193 + 0.405635i 0.0299854 + 0.0519362i 0.880629 0.473807i \(-0.157121\pi\)
−0.850643 + 0.525743i \(0.823787\pi\)
\(62\) 8.68096 1.10248
\(63\) 0 0
\(64\) 8.86084 1.10760
\(65\) −5.96050 10.3239i −0.739309 1.28052i
\(66\) 0 0
\(67\) 1.28911 2.23281i 0.157490 0.272781i −0.776473 0.630151i \(-0.782993\pi\)
0.933963 + 0.357370i \(0.116326\pi\)
\(68\) −0.680883 1.17932i −0.0825692 0.143014i
\(69\) 0 0
\(70\) −10.9192 7.66797i −1.30510 0.916498i
\(71\) 5.00355 0.593813 0.296906 0.954907i \(-0.404045\pi\)
0.296906 + 0.954907i \(0.404045\pi\)
\(72\) 0 0
\(73\) 4.36878 7.56694i 0.511327 0.885644i −0.488587 0.872515i \(-0.662488\pi\)
0.999914 0.0131288i \(-0.00417914\pi\)
\(74\) 0.220628 0.382139i 0.0256475 0.0444227i
\(75\) 0 0
\(76\) −2.60180 −0.298447
\(77\) −2.16520 1.52050i −0.246747 0.173277i
\(78\) 0 0
\(79\) −0.359814 0.623216i −0.0404822 0.0701172i 0.845074 0.534649i \(-0.179556\pi\)
−0.885557 + 0.464532i \(0.846223\pi\)
\(80\) −6.26198 + 10.8461i −0.700111 + 1.21263i
\(81\) 0 0
\(82\) 1.79700 + 3.11250i 0.198446 + 0.343718i
\(83\) 11.5976 1.27300 0.636499 0.771278i \(-0.280382\pi\)
0.636499 + 0.771278i \(0.280382\pi\)
\(84\) 0 0
\(85\) 15.5635 1.68810
\(86\) 7.15901 + 12.3998i 0.771976 + 1.33710i
\(87\) 0 0
\(88\) −1.50796 + 2.61187i −0.160749 + 0.278426i
\(89\) −6.17764 10.7000i −0.654829 1.13420i −0.981937 0.189210i \(-0.939407\pi\)
0.327108 0.944987i \(-0.393926\pi\)
\(90\) 0 0
\(91\) 0.712664 8.01957i 0.0747075 0.840680i
\(92\) 1.54637 0.161220
\(93\) 0 0
\(94\) −1.06671 + 1.84759i −0.110023 + 0.190565i
\(95\) 14.8679 25.7519i 1.52541 2.64209i
\(96\) 0 0
\(97\) −13.1687 −1.33708 −0.668538 0.743678i \(-0.733080\pi\)
−0.668538 + 0.743678i \(0.733080\pi\)
\(98\) −3.05891 8.47629i −0.308997 0.856235i
\(99\) 0 0
\(100\) 1.77319 + 3.07125i 0.177319 + 0.307125i
\(101\) 3.53509 6.12296i 0.351755 0.609258i −0.634802 0.772675i \(-0.718918\pi\)
0.986557 + 0.163417i \(0.0522517\pi\)
\(102\) 0 0
\(103\) −1.16868 2.02421i −0.115153 0.199451i 0.802688 0.596400i \(-0.203403\pi\)
−0.917841 + 0.396948i \(0.870069\pi\)
\(104\) −9.17764 −0.899942
\(105\) 0 0
\(106\) −16.6585 −1.61802
\(107\) −5.42660 9.39914i −0.524609 0.908649i −0.999589 0.0286528i \(-0.990878\pi\)
0.474981 0.879996i \(-0.342455\pi\)
\(108\) 0 0
\(109\) 1.09620 1.89868i 0.104997 0.181860i −0.808740 0.588166i \(-0.799850\pi\)
0.913737 + 0.406306i \(0.133183\pi\)
\(110\) −2.52153 4.36742i −0.240418 0.416417i
\(111\) 0 0
\(112\) −7.67080 + 3.56420i −0.724822 + 0.336785i
\(113\) 11.6415 1.09514 0.547568 0.836761i \(-0.315554\pi\)
0.547568 + 0.836761i \(0.315554\pi\)
\(114\) 0 0
\(115\) −8.83665 + 15.3055i −0.824022 + 1.42725i
\(116\) −0.643668 + 1.11487i −0.0597631 + 0.103513i
\(117\) 0 0
\(118\) −4.71266 −0.433836
\(119\) 8.60204 + 6.04075i 0.788548 + 0.553755i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −0.301486 + 0.522188i −0.0272952 + 0.0472767i
\(123\) 0 0
\(124\) −1.15570 2.00173i −0.103785 0.179760i
\(125\) −20.9439 −1.87328
\(126\) 0 0
\(127\) 5.41837 0.480802 0.240401 0.970674i \(-0.422721\pi\)
0.240401 + 0.970674i \(0.422721\pi\)
\(128\) 3.78717 + 6.55957i 0.334742 + 0.579789i
\(129\) 0 0
\(130\) 7.67316 13.2903i 0.672981 1.16564i
\(131\) −1.03297 1.78916i −0.0902514 0.156320i 0.817365 0.576120i \(-0.195434\pi\)
−0.907617 + 0.419800i \(0.862100\pi\)
\(132\) 0 0
\(133\) 18.2128 8.46250i 1.57925 0.733792i
\(134\) 3.31904 0.286722
\(135\) 0 0
\(136\) 5.99094 10.3766i 0.513719 0.889787i
\(137\) −2.09153 + 3.62263i −0.178691 + 0.309502i −0.941432 0.337202i \(-0.890520\pi\)
0.762741 + 0.646704i \(0.223853\pi\)
\(138\) 0 0
\(139\) 3.61077 0.306261 0.153131 0.988206i \(-0.451064\pi\)
0.153131 + 0.988206i \(0.451064\pi\)
\(140\) −0.314467 + 3.53868i −0.0265773 + 0.299073i
\(141\) 0 0
\(142\) 3.22063 + 5.57829i 0.270269 + 0.468120i
\(143\) 1.52153 2.63537i 0.127237 0.220380i
\(144\) 0 0
\(145\) −7.35641 12.7417i −0.610916 1.05814i
\(146\) 11.2482 0.930905
\(147\) 0 0
\(148\) −0.117489 −0.00965752
\(149\) 6.65960 + 11.5348i 0.545575 + 0.944964i 0.998570 + 0.0534512i \(0.0170221\pi\)
−0.452995 + 0.891513i \(0.649645\pi\)
\(150\) 0 0
\(151\) 3.52160 6.09959i 0.286584 0.496378i −0.686408 0.727217i \(-0.740814\pi\)
0.972992 + 0.230839i \(0.0741469\pi\)
\(152\) −11.4463 19.8257i −0.928421 1.60807i
\(153\) 0 0
\(154\) 0.301486 3.39260i 0.0242944 0.273384i
\(155\) 26.4167 2.12184
\(156\) 0 0
\(157\) −6.37793 + 11.0469i −0.509015 + 0.881639i 0.490931 + 0.871199i \(0.336657\pi\)
−0.999945 + 0.0104406i \(0.996677\pi\)
\(158\) 0.463201 0.802288i 0.0368503 0.0638266i
\(159\) 0 0
\(160\) 7.50687 0.593470
\(161\) −10.8247 + 5.02965i −0.853107 + 0.396392i
\(162\) 0 0
\(163\) −5.70207 9.87627i −0.446621 0.773569i 0.551543 0.834146i \(-0.314039\pi\)
−0.998164 + 0.0605770i \(0.980706\pi\)
\(164\) 0.478471 0.828736i 0.0373623 0.0647134i
\(165\) 0 0
\(166\) 7.46498 + 12.9297i 0.579395 + 1.00354i
\(167\) −12.1109 −0.937167 −0.468583 0.883419i \(-0.655235\pi\)
−0.468583 + 0.883419i \(0.655235\pi\)
\(168\) 0 0
\(169\) −3.73980 −0.287677
\(170\) 10.0177 + 17.3512i 0.768323 + 1.33077i
\(171\) 0 0
\(172\) 1.90616 3.30157i 0.145343 0.251742i
\(173\) 1.82124 + 3.15448i 0.138466 + 0.239830i 0.926916 0.375268i \(-0.122449\pi\)
−0.788450 + 0.615099i \(0.789116\pi\)
\(174\) 0 0
\(175\) −22.4018 15.7316i −1.69342 1.18920i
\(176\) −3.19698 −0.240981
\(177\) 0 0
\(178\) 7.95270 13.7745i 0.596080 1.03244i
\(179\) 4.96320 8.59652i 0.370967 0.642534i −0.618748 0.785590i \(-0.712360\pi\)
0.989715 + 0.143056i \(0.0456929\pi\)
\(180\) 0 0
\(181\) −8.07219 −0.600001 −0.300001 0.953939i \(-0.596987\pi\)
−0.300001 + 0.953939i \(0.596987\pi\)
\(182\) 9.39946 4.36742i 0.696735 0.323734i
\(183\) 0 0
\(184\) 6.80310 + 11.7833i 0.501531 + 0.868677i
\(185\) 0.671383 1.16287i 0.0493611 0.0854959i
\(186\) 0 0
\(187\) 1.98643 + 3.44061i 0.145262 + 0.251602i
\(188\) 0.568044 0.0414289
\(189\) 0 0
\(190\) 38.2798 2.77711
\(191\) 2.79182 + 4.83557i 0.202009 + 0.349890i 0.949176 0.314747i \(-0.101920\pi\)
−0.747167 + 0.664637i \(0.768586\pi\)
\(192\) 0 0
\(193\) −5.56688 + 9.64211i −0.400712 + 0.694054i −0.993812 0.111075i \(-0.964571\pi\)
0.593100 + 0.805129i \(0.297904\pi\)
\(194\) −8.47626 14.6813i −0.608560 1.05406i
\(195\) 0 0
\(196\) −1.54730 + 1.83380i −0.110521 + 0.130986i
\(197\) 0.644475 0.0459170 0.0229585 0.999736i \(-0.492691\pi\)
0.0229585 + 0.999736i \(0.492691\pi\)
\(198\) 0 0
\(199\) 12.6177 21.8545i 0.894447 1.54923i 0.0599599 0.998201i \(-0.480903\pi\)
0.834487 0.551027i \(-0.185764\pi\)
\(200\) −15.6019 + 27.0232i −1.10322 + 1.91083i
\(201\) 0 0
\(202\) 9.10171 0.640394
\(203\) 0.879565 9.89770i 0.0617334 0.694683i
\(204\) 0 0
\(205\) 5.46839 + 9.47152i 0.381929 + 0.661520i
\(206\) 1.50448 2.60584i 0.104822 0.181557i
\(207\) 0 0
\(208\) −4.86430 8.42521i −0.337278 0.584183i
\(209\) 7.59060 0.525053
\(210\) 0 0
\(211\) −17.6357 −1.21409 −0.607044 0.794668i \(-0.707645\pi\)
−0.607044 + 0.794668i \(0.707645\pi\)
\(212\) 2.21776 + 3.84127i 0.152316 + 0.263819i
\(213\) 0 0
\(214\) 6.98585 12.0998i 0.477543 0.827129i
\(215\) 21.7853 + 37.7332i 1.48574 + 2.57338i
\(216\) 0 0
\(217\) 14.6007 + 10.2533i 0.991159 + 0.696037i
\(218\) 2.82236 0.191154
\(219\) 0 0
\(220\) −0.671383 + 1.16287i −0.0452646 + 0.0784007i
\(221\) −6.04484 + 10.4700i −0.406620 + 0.704286i
\(222\) 0 0
\(223\) 16.5853 1.11064 0.555318 0.831638i \(-0.312596\pi\)
0.555318 + 0.831638i \(0.312596\pi\)
\(224\) 4.14910 + 2.91369i 0.277224 + 0.194679i
\(225\) 0 0
\(226\) 7.49323 + 12.9787i 0.498442 + 0.863327i
\(227\) −1.17409 + 2.03358i −0.0779269 + 0.134973i −0.902355 0.430993i \(-0.858163\pi\)
0.824428 + 0.565966i \(0.191497\pi\)
\(228\) 0 0
\(229\) 8.72518 + 15.1125i 0.576576 + 0.998660i 0.995868 + 0.0908081i \(0.0289450\pi\)
−0.419292 + 0.907851i \(0.637722\pi\)
\(230\) −22.7515 −1.50019
\(231\) 0 0
\(232\) −11.3270 −0.743653
\(233\) −2.79530 4.84160i −0.183126 0.317184i 0.759817 0.650137i \(-0.225288\pi\)
−0.942943 + 0.332953i \(0.891955\pi\)
\(234\) 0 0
\(235\) −3.24605 + 5.62233i −0.211749 + 0.366760i
\(236\) 0.627398 + 1.08668i 0.0408401 + 0.0707372i
\(237\) 0 0
\(238\) −1.19776 + 13.4784i −0.0776394 + 0.873672i
\(239\) −17.8147 −1.15234 −0.576169 0.817331i \(-0.695453\pi\)
−0.576169 + 0.817331i \(0.695453\pi\)
\(240\) 0 0
\(241\) −1.49211 + 2.58441i −0.0961152 + 0.166476i −0.910074 0.414447i \(-0.863975\pi\)
0.813958 + 0.580923i \(0.197308\pi\)
\(242\) 0.643668 1.11487i 0.0413765 0.0716663i
\(243\) 0 0
\(244\) 0.160547 0.0102780
\(245\) −9.30845 25.7938i −0.594695 1.64791i
\(246\) 0 0
\(247\) 11.5493 + 20.0040i 0.734866 + 1.27282i
\(248\) 10.1687 17.6128i 0.645715 1.11841i
\(249\) 0 0
\(250\) −13.4809 23.3496i −0.852607 1.47676i
\(251\) −25.0829 −1.58322 −0.791608 0.611029i \(-0.790756\pi\)
−0.791608 + 0.611029i \(0.790756\pi\)
\(252\) 0 0
\(253\) −4.51145 −0.283632
\(254\) 3.48763 + 6.04075i 0.218833 + 0.379030i
\(255\) 0 0
\(256\) 3.98548 6.90306i 0.249093 0.431441i
\(257\) −11.2785 19.5350i −0.703535 1.21856i −0.967218 0.253948i \(-0.918271\pi\)
0.263683 0.964609i \(-0.415063\pi\)
\(258\) 0 0
\(259\) 0.822431 0.382139i 0.0511034 0.0237449i
\(260\) −4.08612 −0.253410
\(261\) 0 0
\(262\) 1.32978 2.30326i 0.0821544 0.142296i
\(263\) 12.8779 22.3052i 0.794087 1.37540i −0.129330 0.991602i \(-0.541283\pi\)
0.923417 0.383798i \(-0.125384\pi\)
\(264\) 0 0
\(265\) −50.6929 −3.11404
\(266\) 21.1575 + 14.8578i 1.29725 + 0.910990i
\(267\) 0 0
\(268\) −0.441865 0.765332i −0.0269912 0.0467501i
\(269\) −10.3481 + 17.9234i −0.630935 + 1.09281i 0.356426 + 0.934323i \(0.383995\pi\)
−0.987361 + 0.158488i \(0.949338\pi\)
\(270\) 0 0
\(271\) −1.53390 2.65680i −0.0931779 0.161389i 0.815669 0.578519i \(-0.196369\pi\)
−0.908847 + 0.417130i \(0.863036\pi\)
\(272\) 12.7012 0.770122
\(273\) 0 0
\(274\) −5.38499 −0.325319
\(275\) −5.17316 8.96018i −0.311953 0.540319i
\(276\) 0 0
\(277\) 3.34277 5.78984i 0.200847 0.347878i −0.747954 0.663750i \(-0.768964\pi\)
0.948802 + 0.315872i \(0.102297\pi\)
\(278\) 2.32413 + 4.02552i 0.139392 + 0.241435i
\(279\) 0 0
\(280\) −28.3481 + 13.1718i −1.69412 + 0.787166i
\(281\) −3.11286 −0.185698 −0.0928489 0.995680i \(-0.529597\pi\)
−0.0928489 + 0.995680i \(0.529597\pi\)
\(282\) 0 0
\(283\) 11.1799 19.3642i 0.664578 1.15108i −0.314822 0.949151i \(-0.601945\pi\)
0.979400 0.201932i \(-0.0647220\pi\)
\(284\) 0.857525 1.48528i 0.0508848 0.0881350i
\(285\) 0 0
\(286\) 3.91744 0.231643
\(287\) −0.653825 + 7.35746i −0.0385941 + 0.434297i
\(288\) 0 0
\(289\) 0.608157 + 1.05336i 0.0357739 + 0.0619623i
\(290\) 9.47016 16.4028i 0.556107 0.963206i
\(291\) 0 0
\(292\) −1.49747 2.59370i −0.0876328 0.151785i
\(293\) −10.6291 −0.620958 −0.310479 0.950580i \(-0.600489\pi\)
−0.310479 + 0.950580i \(0.600489\pi\)
\(294\) 0 0
\(295\) −14.3409 −0.834960
\(296\) −0.516879 0.895261i −0.0300430 0.0520360i
\(297\) 0 0
\(298\) −8.57314 + 14.8491i −0.496628 + 0.860186i
\(299\) −6.86430 11.8893i −0.396972 0.687576i
\(300\) 0 0
\(301\) −2.60475 + 29.3111i −0.150135 + 1.68946i
\(302\) 9.06697 0.521746
\(303\) 0 0
\(304\) 12.1335 21.0158i 0.695903 1.20534i
\(305\) −0.917438 + 1.58905i −0.0525324 + 0.0909887i
\(306\) 0 0
\(307\) −18.5229 −1.05716 −0.528580 0.848883i \(-0.677275\pi\)
−0.528580 + 0.848883i \(0.677275\pi\)
\(308\) −0.822431 + 0.382139i −0.0468623 + 0.0217744i
\(309\) 0 0
\(310\) 17.0036 + 29.4510i 0.965737 + 1.67271i
\(311\) −9.92192 + 17.1853i −0.562620 + 0.974487i 0.434646 + 0.900601i \(0.356873\pi\)
−0.997267 + 0.0738860i \(0.976460\pi\)
\(312\) 0 0
\(313\) 10.5572 + 18.2856i 0.596729 + 1.03356i 0.993300 + 0.115561i \(0.0368665\pi\)
−0.396572 + 0.918004i \(0.629800\pi\)
\(314\) −16.4211 −0.926696
\(315\) 0 0
\(316\) −0.246664 −0.0138759
\(317\) −7.90329 13.6889i −0.443893 0.768845i 0.554081 0.832462i \(-0.313070\pi\)
−0.997974 + 0.0636174i \(0.979736\pi\)
\(318\) 0 0
\(319\) 1.87786 3.25255i 0.105140 0.182108i
\(320\) 17.3559 + 30.0613i 0.970224 + 1.68048i
\(321\) 0 0
\(322\) −12.5749 8.83068i −0.700772 0.492114i
\(323\) −30.1565 −1.67795
\(324\) 0 0
\(325\) 15.7422 27.2663i 0.873222 1.51246i
\(326\) 7.34048 12.7141i 0.406551 0.704168i
\(327\) 0 0
\(328\) 8.41992 0.464912
\(329\) −3.97635 + 1.84759i −0.219223 + 0.101861i
\(330\) 0 0
\(331\) 4.58163 + 7.93562i 0.251829 + 0.436181i 0.964030 0.265795i \(-0.0856345\pi\)
−0.712200 + 0.701976i \(0.752301\pi\)
\(332\) 1.98763 3.44267i 0.109085 0.188941i
\(333\) 0 0
\(334\) −7.79537 13.5020i −0.426544 0.738796i
\(335\) 10.1000 0.551824
\(336\) 0 0
\(337\) −12.7174 −0.692760 −0.346380 0.938094i \(-0.612589\pi\)
−0.346380 + 0.938094i \(0.612589\pi\)
\(338\) −2.40719 4.16937i −0.130934 0.226784i
\(339\) 0 0
\(340\) 2.66732 4.61993i 0.144656 0.250551i
\(341\) 3.37168 + 5.83991i 0.182586 + 0.316249i
\(342\) 0 0
\(343\) 4.86668 17.8694i 0.262776 0.964857i
\(344\) 33.5438 1.80856
\(345\) 0 0
\(346\) −2.34454 + 4.06087i −0.126043 + 0.218314i
\(347\) 1.27370 2.20611i 0.0683756 0.118430i −0.829811 0.558045i \(-0.811552\pi\)
0.898186 + 0.439615i \(0.144885\pi\)
\(348\) 0 0
\(349\) −25.0183 −1.33920 −0.669600 0.742722i \(-0.733534\pi\)
−0.669600 + 0.742722i \(0.733534\pi\)
\(350\) 3.11927 35.1009i 0.166732 1.87622i
\(351\) 0 0
\(352\) 0.958135 + 1.65954i 0.0510688 + 0.0884537i
\(353\) −5.71444 + 9.89770i −0.304149 + 0.526802i −0.977072 0.212911i \(-0.931705\pi\)
0.672922 + 0.739713i \(0.265039\pi\)
\(354\) 0 0
\(355\) 9.80056 + 16.9751i 0.520160 + 0.900943i
\(356\) −4.23498 −0.224453
\(357\) 0 0
\(358\) 12.7786 0.675371
\(359\) 14.9811 + 25.9480i 0.790672 + 1.36948i 0.925551 + 0.378622i \(0.123602\pi\)
−0.134879 + 0.990862i \(0.543065\pi\)
\(360\) 0 0
\(361\) −19.3086 + 33.4435i −1.01624 + 1.76018i
\(362\) −5.19581 8.99941i −0.273086 0.472998i
\(363\) 0 0
\(364\) −2.25843 1.58597i −0.118374 0.0831275i
\(365\) 34.2288 1.79162
\(366\) 0 0
\(367\) 7.23130 12.5250i 0.377471 0.653798i −0.613223 0.789910i \(-0.710127\pi\)
0.990693 + 0.136112i \(0.0434606\pi\)
\(368\) −7.21150 + 12.4907i −0.375925 + 0.651122i
\(369\) 0 0
\(370\) 1.72859 0.0898652
\(371\) −28.0184 19.6758i −1.45464 1.02152i
\(372\) 0 0
\(373\) −15.0726 26.1066i −0.780431 1.35175i −0.931691 0.363252i \(-0.881666\pi\)
0.151260 0.988494i \(-0.451667\pi\)
\(374\) −2.55721 + 4.42921i −0.132230 + 0.229029i
\(375\) 0 0
\(376\) 2.49905 + 4.32848i 0.128879 + 0.223224i
\(377\) 11.4289 0.588617
\(378\) 0 0
\(379\) −11.7452 −0.603311 −0.301655 0.953417i \(-0.597539\pi\)
−0.301655 + 0.953417i \(0.597539\pi\)
\(380\) −5.09620 8.82688i −0.261430 0.452809i
\(381\) 0 0
\(382\) −3.59401 + 6.22500i −0.183885 + 0.318499i
\(383\) 13.9685 + 24.1942i 0.713759 + 1.23627i 0.963436 + 0.267937i \(0.0863420\pi\)
−0.249678 + 0.968329i \(0.580325\pi\)
\(384\) 0 0
\(385\) 0.917438 10.3239i 0.0467570 0.526154i
\(386\) −14.3329 −0.729524
\(387\) 0 0
\(388\) −2.25689 + 3.90905i −0.114576 + 0.198452i
\(389\) −7.87896 + 13.6468i −0.399479 + 0.691918i −0.993662 0.112412i \(-0.964142\pi\)
0.594183 + 0.804330i \(0.297476\pi\)
\(390\) 0 0
\(391\) 17.9234 0.906424
\(392\) −20.7807 3.72277i −1.04958 0.188028i
\(393\) 0 0
\(394\) 0.414828 + 0.718503i 0.0208987 + 0.0361977i
\(395\) 1.40955 2.44141i 0.0709221 0.122841i
\(396\) 0 0
\(397\) −6.40446 11.0928i −0.321430 0.556734i 0.659353 0.751834i \(-0.270830\pi\)
−0.980783 + 0.195100i \(0.937497\pi\)
\(398\) 32.4865 1.62840
\(399\) 0 0
\(400\) −33.0770 −1.65385
\(401\) −5.49033 9.50953i −0.274174 0.474883i 0.695752 0.718282i \(-0.255071\pi\)
−0.969926 + 0.243398i \(0.921738\pi\)
\(402\) 0 0
\(403\) −10.2602 + 17.7712i −0.511097 + 0.885246i
\(404\) −1.21171 2.09875i −0.0602849 0.104417i
\(405\) 0 0
\(406\) 11.6008 5.39024i 0.575736 0.267513i
\(407\) 0.342766 0.0169903
\(408\) 0 0
\(409\) −9.01281 + 15.6106i −0.445655 + 0.771896i −0.998098 0.0616543i \(-0.980362\pi\)
0.552443 + 0.833551i \(0.313696\pi\)
\(410\) −7.03965 + 12.1930i −0.347664 + 0.602171i
\(411\) 0 0
\(412\) −0.801168 −0.0394707
\(413\) −7.92633 5.56623i −0.390029 0.273896i
\(414\) 0 0
\(415\) 22.7164 + 39.3459i 1.11510 + 1.93141i
\(416\) −2.91566 + 5.05007i −0.142952 + 0.247600i
\(417\) 0 0
\(418\) 4.88582 + 8.46250i 0.238974 + 0.413914i
\(419\) −11.8542 −0.579116 −0.289558 0.957160i \(-0.593508\pi\)
−0.289558 + 0.957160i \(0.593508\pi\)
\(420\) 0 0
\(421\) 26.4890 1.29100 0.645498 0.763762i \(-0.276650\pi\)
0.645498 + 0.763762i \(0.276650\pi\)
\(422\) −11.3515 19.6614i −0.552583 0.957101i
\(423\) 0 0
\(424\) −19.5135 + 33.7985i −0.947661 + 1.64140i
\(425\) 20.5523 + 35.5976i 0.996932 + 1.72674i
\(426\) 0 0
\(427\) −1.12384 + 0.522188i −0.0543866 + 0.0252705i
\(428\) −3.72011 −0.179818
\(429\) 0 0
\(430\) −28.0450 + 48.5753i −1.35245 + 2.34251i
\(431\) −1.08841 + 1.88517i −0.0524266 + 0.0908056i −0.891048 0.453910i \(-0.850029\pi\)
0.838621 + 0.544715i \(0.183362\pi\)
\(432\) 0 0
\(433\) −16.4831 −0.792129 −0.396065 0.918223i \(-0.629624\pi\)
−0.396065 + 0.918223i \(0.629624\pi\)
\(434\) −2.03302 + 22.8775i −0.0975882 + 1.09815i
\(435\) 0 0
\(436\) −0.375741 0.650802i −0.0179947 0.0311678i
\(437\) 17.1223 29.6567i 0.819070 1.41867i
\(438\) 0 0
\(439\) 0.376500 + 0.652117i 0.0179694 + 0.0311239i 0.874870 0.484357i \(-0.160947\pi\)
−0.856901 + 0.515481i \(0.827613\pi\)
\(440\) −11.8147 −0.563244
\(441\) 0 0
\(442\) −15.5635 −0.740279
\(443\) 20.0309 + 34.6946i 0.951698 + 1.64839i 0.741750 + 0.670677i \(0.233996\pi\)
0.209949 + 0.977712i \(0.432670\pi\)
\(444\) 0 0
\(445\) 24.2005 41.9166i 1.14722 1.98704i
\(446\) 10.6754 + 18.4904i 0.505497 + 0.875547i
\(447\) 0 0
\(448\) −2.07515 + 23.3516i −0.0980416 + 1.10326i
\(449\) 7.71924 0.364294 0.182147 0.983271i \(-0.441695\pi\)
0.182147 + 0.983271i \(0.441695\pi\)
\(450\) 0 0
\(451\) −1.39591 + 2.41779i −0.0657308 + 0.113849i
\(452\) 1.99515 3.45570i 0.0938440 0.162543i
\(453\) 0 0
\(454\) −3.02289 −0.141871
\(455\) 28.6031 13.2903i 1.34093 0.623059i
\(456\) 0 0
\(457\) −13.1823 22.8324i −0.616643 1.06806i −0.990094 0.140407i \(-0.955159\pi\)
0.373451 0.927650i \(-0.378174\pi\)
\(458\) −11.2322 + 19.4548i −0.524848 + 0.909064i
\(459\) 0 0
\(460\) 3.02891 + 5.24622i 0.141224 + 0.244606i
\(461\) −12.4685 −0.580718 −0.290359 0.956918i \(-0.593775\pi\)
−0.290359 + 0.956918i \(0.593775\pi\)
\(462\) 0 0
\(463\) 37.7630 1.75499 0.877497 0.479582i \(-0.159212\pi\)
0.877497 + 0.479582i \(0.159212\pi\)
\(464\) −6.00348 10.3983i −0.278705 0.482731i
\(465\) 0 0
\(466\) 3.59849 6.23277i 0.166697 0.288727i
\(467\) 11.0104 + 19.0706i 0.509502 + 0.882483i 0.999939 + 0.0110065i \(0.00350356\pi\)
−0.490438 + 0.871476i \(0.663163\pi\)
\(468\) 0 0
\(469\) 5.58237 + 3.92019i 0.257770 + 0.181018i
\(470\) −8.35753 −0.385504
\(471\) 0 0
\(472\) −5.52034 + 9.56150i −0.254094 + 0.440104i
\(473\) −5.56111 + 9.63212i −0.255700 + 0.442885i
\(474\) 0 0
\(475\) 78.5348 3.60342
\(476\) 3.26741 1.51819i 0.149761 0.0695860i
\(477\) 0 0
\(478\) −11.4668 19.8610i −0.524477 0.908421i
\(479\) −4.72401 + 8.18223i −0.215846 + 0.373856i −0.953534 0.301286i \(-0.902584\pi\)
0.737688 + 0.675142i \(0.235918\pi\)
\(480\) 0 0
\(481\) 0.521529 + 0.903315i 0.0237797 + 0.0411876i
\(482\) −3.84169 −0.174984
\(483\) 0 0
\(484\) −0.342766 −0.0155803
\(485\) −25.7937 44.6761i −1.17123 2.02864i
\(486\) 0 0
\(487\) −20.1170 + 34.8437i −0.911589 + 1.57892i −0.0997702 + 0.995011i \(0.531811\pi\)
−0.811819 + 0.583909i \(0.801523\pi\)
\(488\) 0.706310 + 1.22337i 0.0319732 + 0.0553791i
\(489\) 0 0
\(490\) 22.7651 26.9803i 1.02842 1.21885i
\(491\) −20.2964 −0.915966 −0.457983 0.888961i \(-0.651428\pi\)
−0.457983 + 0.888961i \(0.651428\pi\)
\(492\) 0 0
\(493\) −7.46050 + 12.9220i −0.336004 + 0.581976i
\(494\) −14.8679 + 25.7519i −0.668936 + 1.15863i
\(495\) 0 0
\(496\) 21.5583 0.967998
\(497\) −1.17180 + 13.1862i −0.0525624 + 0.591482i
\(498\) 0 0
\(499\) −18.1477 31.4328i −0.812403 1.40712i −0.911178 0.412014i \(-0.864826\pi\)
0.0987744 0.995110i \(-0.468508\pi\)
\(500\) −3.58943 + 6.21708i −0.160524 + 0.278036i
\(501\) 0 0
\(502\) −16.1450 27.9640i −0.720588 1.24809i
\(503\) 27.6923 1.23474 0.617368 0.786674i \(-0.288199\pi\)
0.617368 + 0.786674i \(0.288199\pi\)
\(504\) 0 0
\(505\) 27.6970 1.23250
\(506\) −2.90387 5.02965i −0.129093 0.223595i
\(507\) 0 0
\(508\) 0.928617 1.60841i 0.0412007 0.0713617i
\(509\) 4.54399 + 7.87041i 0.201409 + 0.348850i 0.948983 0.315329i \(-0.102115\pi\)
−0.747574 + 0.664179i \(0.768781\pi\)
\(510\) 0 0
\(511\) 18.9185 + 13.2855i 0.836906 + 0.587714i
\(512\) 25.4100 1.12297
\(513\) 0 0
\(514\) 14.5192 25.1481i 0.640416 1.10923i
\(515\) 4.57823 7.92972i 0.201741 0.349425i
\(516\) 0 0
\(517\) −1.65723 −0.0728850
\(518\) 0.955405 + 0.670929i 0.0419781 + 0.0294789i
\(519\) 0 0
\(520\) −17.9764 31.1361i −0.788318 1.36541i
\(521\) 19.4255 33.6459i 0.851046 1.47405i −0.0292202 0.999573i \(-0.509302\pi\)
0.880266 0.474481i \(-0.157364\pi\)
\(522\) 0 0
\(523\) 10.7500 + 18.6196i 0.470066 + 0.814178i 0.999414 0.0342267i \(-0.0108968\pi\)
−0.529348 + 0.848405i \(0.677564\pi\)
\(524\) −0.708138 −0.0309352
\(525\) 0 0
\(526\) 33.1565 1.44569
\(527\) −13.3952 23.2012i −0.583505 1.01066i
\(528\) 0 0
\(529\) 1.32343 2.29225i 0.0575405 0.0996630i
\(530\) −32.6294 56.5158i −1.41733 2.45489i
\(531\) 0 0
\(532\) 0.609325 6.85670i 0.0264176 0.297276i
\(533\) −8.49566 −0.367988
\(534\) 0 0
\(535\) 21.2584 36.8205i 0.919079 1.59189i
\(536\) 3.88787 6.73399i 0.167930 0.290864i
\(537\) 0 0
\(538\) −26.6430 −1.14866
\(539\) 4.51415 5.35000i 0.194438 0.230441i
\(540\) 0 0
\(541\) 14.9470 + 25.8890i 0.642622 + 1.11305i 0.984845 + 0.173435i \(0.0554867\pi\)
−0.342223 + 0.939619i \(0.611180\pi\)
\(542\) 1.97465 3.42019i 0.0848183 0.146910i
\(543\) 0 0
\(544\) −3.80654 6.59313i −0.163204 0.282678i
\(545\) 8.58860 0.367895
\(546\) 0 0
\(547\) −31.9072 −1.36425 −0.682127 0.731234i \(-0.738945\pi\)
−0.682127 + 0.731234i \(0.738945\pi\)
\(548\) 0.716905 + 1.24172i 0.0306247 + 0.0530435i
\(549\) 0 0
\(550\) 6.65960 11.5348i 0.283966 0.491844i
\(551\) 14.2541 + 24.6888i 0.607245 + 1.05178i
\(552\) 0 0
\(553\) 1.72667 0.802288i 0.0734254 0.0341167i
\(554\) 8.60653 0.365656
\(555\) 0 0
\(556\) 0.618825 1.07184i 0.0262440 0.0454560i
\(557\) −7.30446 + 12.6517i −0.309500 + 0.536069i −0.978253 0.207415i \(-0.933495\pi\)
0.668753 + 0.743484i \(0.266828\pi\)
\(558\) 0 0
\(559\) −33.8455 −1.43151
\(560\) −27.1169 19.0427i −1.14590 0.804701i
\(561\) 0 0
\(562\) −2.00365 3.47042i −0.0845189 0.146391i
\(563\) −4.24116 + 7.34590i −0.178743 + 0.309593i −0.941450 0.337151i \(-0.890537\pi\)
0.762707 + 0.646744i \(0.223870\pi\)
\(564\) 0 0
\(565\) 22.8023 + 39.4948i 0.959301 + 1.66156i
\(566\) 28.7847 1.20991
\(567\) 0 0
\(568\) 15.0904 0.633177
\(569\) 10.3529 + 17.9318i 0.434017 + 0.751740i 0.997215 0.0745824i \(-0.0237624\pi\)
−0.563198 + 0.826322i \(0.690429\pi\)
\(570\) 0 0
\(571\) −0.504409 + 0.873661i −0.0211088 + 0.0365616i −0.876387 0.481608i \(-0.840053\pi\)
0.855278 + 0.518169i \(0.173386\pi\)
\(572\) −0.521529 0.903315i −0.0218062 0.0377695i
\(573\) 0 0
\(574\) −8.62343 + 4.00683i −0.359935 + 0.167242i
\(575\) −46.6769 −1.94656
\(576\) 0 0
\(577\) 19.1925 33.2425i 0.798996 1.38390i −0.121274 0.992619i \(-0.538698\pi\)
0.920270 0.391283i \(-0.127969\pi\)
\(578\) −0.782902 + 1.35603i −0.0325644 + 0.0564033i
\(579\) 0 0
\(580\) −5.04306 −0.209402
\(581\) −2.71607 + 30.5638i −0.112682 + 1.26800i
\(582\) 0 0
\(583\) −6.47016 11.2067i −0.267967 0.464132i
\(584\) 13.1759 22.8214i 0.545223 0.944354i
\(585\) 0 0
\(586\) −6.84160 11.8500i −0.282624 0.489519i
\(587\) −3.95733 −0.163336 −0.0816682 0.996660i \(-0.526025\pi\)
−0.0816682 + 0.996660i \(0.526025\pi\)
\(588\) 0 0
\(589\) −51.1861 −2.10909
\(590\) −9.23079 15.9882i −0.380025 0.658223i
\(591\) 0 0
\(592\) 0.547908 0.949005i 0.0225189 0.0390039i
\(593\) 4.25131 + 7.36349i 0.174581 + 0.302382i 0.940016 0.341130i \(-0.110810\pi\)
−0.765435 + 0.643513i \(0.777476\pi\)
\(594\) 0 0
\(595\) −3.64486 + 41.0154i −0.149425 + 1.68147i
\(596\) 4.56537 0.187005
\(597\) 0 0
\(598\) 8.83665 15.3055i 0.361358 0.625890i
\(599\) −3.48076 + 6.02885i −0.142220 + 0.246332i −0.928332 0.371751i \(-0.878757\pi\)
0.786112 + 0.618084i \(0.212091\pi\)
\(600\) 0 0
\(601\) 31.8738 1.30016 0.650081 0.759865i \(-0.274735\pi\)
0.650081 + 0.759865i \(0.274735\pi\)
\(602\) −34.3545 + 15.9627i −1.40019 + 0.650590i
\(603\) 0 0
\(604\) −1.20709 2.09074i −0.0491157 0.0850709i
\(605\) 1.95872 3.39260i 0.0796333 0.137929i
\(606\) 0 0
\(607\) −1.67204 2.89606i −0.0678660 0.117547i 0.830096 0.557621i \(-0.188286\pi\)
−0.897962 + 0.440074i \(0.854952\pi\)
\(608\) −14.5456 −0.589903
\(609\) 0 0
\(610\) −2.36210 −0.0956387
\(611\) −2.52153 4.36742i −0.102010 0.176687i
\(612\) 0 0
\(613\) 2.11325 3.66025i 0.0853533 0.147836i −0.820188 0.572093i \(-0.806131\pi\)
0.905542 + 0.424257i \(0.139465\pi\)
\(614\) −11.9226 20.6506i −0.481158 0.833390i
\(615\) 0 0
\(616\) −6.53008 4.58572i −0.263104 0.184764i
\(617\) −3.91266 −0.157518 −0.0787590 0.996894i \(-0.525096\pi\)
−0.0787590 + 0.996894i \(0.525096\pi\)
\(618\) 0 0
\(619\) −0.869194 + 1.50549i −0.0349359 + 0.0605107i −0.882965 0.469439i \(-0.844456\pi\)
0.848029 + 0.529950i \(0.177789\pi\)
\(620\) 4.52737 7.84164i 0.181824 0.314928i
\(621\) 0 0
\(622\) −25.5457 −1.02429
\(623\) 29.6452 13.7745i 1.18771 0.551863i
\(624\) 0 0
\(625\) −15.1574 26.2534i −0.606295 1.05013i
\(626\) −13.5907 + 23.5397i −0.543193 + 0.940837i
\(627\) 0 0
\(628\) 2.18614 + 3.78651i 0.0872366 + 0.151098i
\(629\) −1.36177 −0.0542972
\(630\) 0 0
\(631\) −13.3994 −0.533420 −0.266710 0.963777i \(-0.585937\pi\)
−0.266710 + 0.963777i \(0.585937\pi\)
\(632\) −1.08517 1.87957i −0.0431658 0.0747654i
\(633\) 0 0
\(634\) 10.1742 17.6222i 0.404069 0.699867i
\(635\) 10.6131 + 18.3824i 0.421166 + 0.729481i
\(636\) 0 0
\(637\) 20.9676 + 3.75626i 0.830767 + 0.148829i
\(638\) 4.83488 0.191415
\(639\) 0 0
\(640\) −14.8360 + 25.6967i −0.586444 + 1.01575i
\(641\) 5.39101 9.33750i 0.212932 0.368809i −0.739699 0.672938i \(-0.765032\pi\)
0.952631 + 0.304129i \(0.0983653\pi\)
\(642\) 0 0
\(643\) 30.1180 1.18774 0.593868 0.804562i \(-0.297600\pi\)
0.593868 + 0.804562i \(0.297600\pi\)
\(644\) −0.362150 + 4.07526i −0.0142707 + 0.160588i
\(645\) 0 0
\(646\) −19.4107 33.6204i −0.763705 1.32278i
\(647\) −6.32343 + 10.9525i −0.248600 + 0.430587i −0.963138 0.269009i \(-0.913304\pi\)
0.714538 + 0.699597i \(0.246637\pi\)
\(648\) 0 0
\(649\) −1.83039 3.17034i −0.0718493 0.124447i
\(650\) 40.5311 1.58976
\(651\) 0 0
\(652\) −3.90896 −0.153087
\(653\) 0.751146 + 1.30102i 0.0293946 + 0.0509130i 0.880348 0.474327i \(-0.157309\pi\)
−0.850954 + 0.525240i \(0.823975\pi\)
\(654\) 0 0
\(655\) 4.04661 7.00894i 0.158114 0.273862i
\(656\) 4.46269 + 7.72961i 0.174239 + 0.301790i
\(657\) 0 0
\(658\) −4.61927 3.24386i −0.180078 0.126459i
\(659\) 14.4079 0.561251 0.280626 0.959817i \(-0.409458\pi\)
0.280626 + 0.959817i \(0.409458\pi\)
\(660\) 0 0
\(661\) 8.39269 14.5366i 0.326438 0.565407i −0.655364 0.755313i \(-0.727485\pi\)
0.981802 + 0.189906i \(0.0608182\pi\)
\(662\) −5.89810 + 10.2158i −0.229236 + 0.397049i
\(663\) 0 0
\(664\) 34.9774 1.35739
\(665\) 64.3837 + 45.2131i 2.49669 + 1.75329i
\(666\) 0 0
\(667\) −8.47187 14.6737i −0.328032 0.568168i
\(668\) −2.07560 + 3.59504i −0.0803073 + 0.139096i
\(669\) 0 0
\(670\) 6.50107 + 11.2602i 0.251158 + 0.435019i
\(671\) −0.468387 −0.0180819
\(672\) 0 0
\(673\) −48.1663 −1.85667 −0.928337 0.371740i \(-0.878761\pi\)
−0.928337 + 0.371740i \(0.878761\pi\)
\(674\) −8.18577 14.1782i −0.315304 0.546123i
\(675\) 0 0
\(676\) −0.640938 + 1.11014i −0.0246515 + 0.0426976i
\(677\) −5.85741 10.1453i −0.225118 0.389916i 0.731237 0.682124i \(-0.238944\pi\)
−0.956355 + 0.292207i \(0.905610\pi\)
\(678\) 0 0
\(679\) 3.08402 34.7043i 0.118354 1.33183i
\(680\) 46.9383 1.80000
\(681\) 0 0
\(682\) −4.34048 + 7.51793i −0.166206 + 0.287876i
\(683\) 5.70996 9.88994i 0.218486 0.378428i −0.735860 0.677134i \(-0.763222\pi\)
0.954345 + 0.298706i \(0.0965550\pi\)
\(684\) 0 0
\(685\) −16.3868 −0.626109
\(686\) 23.0545 6.07626i 0.880225 0.231993i
\(687\) 0 0
\(688\) 17.7787 + 30.7937i 0.677808 + 1.17400i
\(689\) 19.6891 34.1025i 0.750095 1.29920i
\(690\) 0 0
\(691\) 11.4596 + 19.8486i 0.435943 + 0.755075i 0.997372 0.0724499i \(-0.0230817\pi\)
−0.561429 + 0.827525i \(0.689748\pi\)
\(692\) 1.24852 0.0474615
\(693\) 0 0
\(694\) 3.27935 0.124482
\(695\) 7.07248 + 12.2499i 0.268274 + 0.464665i
\(696\) 0 0
\(697\) 5.54576 9.60554i 0.210061 0.363836i
\(698\) −16.1035 27.8921i −0.609526 1.05573i
\(699\) 0 0
\(700\) −8.50913 + 3.95373i −0.321615 + 0.149437i
\(701\) −25.3982 −0.959277 −0.479638 0.877466i \(-0.659232\pi\)
−0.479638 + 0.877466i \(0.659232\pi\)
\(702\) 0 0
\(703\) −1.30090 + 2.25323i −0.0490644 + 0.0849821i
\(704\) −4.43042 + 7.67371i −0.166978 + 0.289214i
\(705\) 0 0
\(706\) −14.7128 −0.553724
\(707\) 15.3084 + 10.7502i 0.575730 + 0.404304i
\(708\) 0 0
\(709\) 8.25054 + 14.2903i 0.309855 + 0.536685i 0.978331 0.207049i \(-0.0663860\pi\)
−0.668475 + 0.743735i \(0.733053\pi\)
\(710\) −12.6166 + 21.8526i −0.473493 + 0.820114i
\(711\) 0 0
\(712\) −18.6313 32.2704i −0.698238 1.20938i
\(713\) 30.4223 1.13932
\(714\) 0 0
\(715\) 11.9210 0.445820
\(716\) −1.70122 2.94660i −0.0635775 0.110120i
\(717\) 0 0
\(718\) −19.2857 + 33.4038i −0.719736 + 1.24662i
\(719\) −17.9149 31.0295i −0.668112 1.15720i −0.978431 0.206572i \(-0.933769\pi\)
0.310319 0.950632i \(-0.399564\pi\)
\(720\) 0 0
\(721\) 5.60823 2.60584i 0.208862 0.0970465i
\(722\) −49.7133 −1.85014
\(723\) 0 0
\(724\) −1.38344 + 2.39619i −0.0514151 + 0.0890535i
\(725\) 19.4290 33.6519i 0.721573 1.24980i
\(726\) 0 0
\(727\) −18.7401 −0.695031 −0.347516 0.937674i \(-0.612975\pi\)
−0.347516 + 0.937674i \(0.612975\pi\)
\(728\) 2.14934 24.1864i 0.0796600 0.896409i
\(729\) 0 0
\(730\) 22.0320 + 38.1605i 0.815441 + 1.41239i
\(731\) 22.0935 38.2671i 0.817159 1.41536i
\(732\) 0 0
\(733\) −23.9039 41.4028i −0.882912 1.52925i −0.848088 0.529856i \(-0.822246\pi\)
−0.0348246 0.999393i \(-0.511087\pi\)
\(734\) 18.6182 0.687211
\(735\) 0 0
\(736\) 8.64515 0.318664
\(737\) 1.28911 + 2.23281i 0.0474851 + 0.0822466i
\(738\) 0 0
\(739\) 6.07009 10.5137i 0.223292 0.386753i −0.732514 0.680752i \(-0.761653\pi\)
0.955806 + 0.293999i \(0.0949864\pi\)
\(740\) −0.230128 0.398593i −0.00845966 0.0146526i
\(741\) 0 0
\(742\) 3.90132 43.9014i 0.143222 1.61167i
\(743\) −30.9615 −1.13587 −0.567934 0.823074i \(-0.692257\pi\)
−0.567934 + 0.823074i \(0.692257\pi\)
\(744\) 0 0
\(745\) −26.0886 + 45.1867i −0.955811 + 1.65551i
\(746\) 19.4035 33.6079i 0.710414 1.23047i
\(747\) 0 0
\(748\) 1.36177 0.0497911
\(749\) 26.0410 12.0998i 0.951519 0.442119i
\(750\) 0 0
\(751\) 16.0219 + 27.7507i 0.584646 + 1.01264i 0.994919 + 0.100674i \(0.0321000\pi\)
−0.410273 + 0.911963i \(0.634567\pi\)
\(752\) −2.64907 + 4.58832i −0.0966016 + 0.167319i
\(753\) 0 0
\(754\) 7.35641 + 12.7417i 0.267904 + 0.464024i
\(755\) 27.5913 1.00415
\(756\) 0 0
\(757\) 32.5209 1.18199 0.590996 0.806675i \(-0.298735\pi\)
0.590996 + 0.806675i \(0.298735\pi\)
\(758\) −7.56001 13.0943i −0.274592 0.475607i
\(759\) 0 0
\(760\) 44.8404 77.6658i 1.62653 2.81723i
\(761\) −1.23181 2.13355i −0.0446530 0.0773412i 0.842835 0.538172i \(-0.180885\pi\)
−0.887488 + 0.460831i \(0.847552\pi\)
\(762\) 0 0
\(763\) 4.74698 + 3.33355i 0.171852 + 0.120683i
\(764\) 1.91388 0.0692419
\(765\) 0 0
\(766\) −17.9822 + 31.1461i −0.649723 + 1.12535i
\(767\) 5.57000 9.64752i 0.201121 0.348352i
\(768\) 0 0
\(769\) 49.0232 1.76782 0.883911 0.467656i \(-0.154901\pi\)
0.883911 + 0.467656i \(0.154901\pi\)
\(770\) 12.1003 5.62233i 0.436063 0.202615i
\(771\) 0 0
\(772\) 1.90814 + 3.30499i 0.0686754 + 0.118949i
\(773\) 0.208182 0.360582i 0.00748779 0.0129692i −0.862257 0.506471i \(-0.830950\pi\)
0.869745 + 0.493501i \(0.164283\pi\)
\(774\) 0 0
\(775\) 34.8844 + 60.4216i 1.25309 + 2.17041i
\(776\) −39.7158 −1.42571
\(777\) 0 0
\(778\) −20.2857 −0.727278
\(779\) −10.5958 18.3524i −0.379633 0.657544i
\(780\) 0 0
\(781\) −2.50178 + 4.33321i −0.0895206 + 0.155054i
\(782\) 11.5367 + 19.9822i 0.412552 + 0.714561i
\(783\) 0 0
\(784\) −7.59652 21.0501i −0.271304 0.751788i
\(785\) −49.9703 −1.78352
\(786\) 0 0
\(787\) −2.41532 + 4.18345i −0.0860968 + 0.149124i −0.905858 0.423581i \(-0.860773\pi\)
0.819761 + 0.572705i \(0.194106\pi\)
\(788\) 0.110452 0.191309i 0.00393470 0.00681510i
\(789\) 0 0
\(790\) 3.62912 0.129118
\(791\) −2.72635 + 30.6795i −0.0969379 + 1.09084i
\(792\) 0 0
\(793\) −0.712664 1.23437i −0.0253074 0.0438338i
\(794\) 8.24469 14.2802i 0.292593 0.506786i
\(795\) 0 0
\(796\) −4.32493 7.49101i −0.153293 0.265512i
\(797\) −43.5752 −1.54351 −0.771756 0.635919i \(-0.780621\pi\)
−0.771756 + 0.635919i \(0.780621\pi\)
\(798\) 0 0
\(799\) 6.58397 0.232924
\(800\) 9.91317 + 17.1701i 0.350484 + 0.607055i
\(801\) 0 0
\(802\) 7.06790 12.2420i 0.249576 0.432279i
\(803\) 4.36878 + 7.56694i 0.154171 + 0.267032i
\(804\) 0 0
\(805\) −38.2662 26.8723i −1.34871 0.947123i
\(806\) −26.4167 −0.930487
\(807\) 0 0
\(808\) 10.6616 18.4664i 0.375073 0.649646i
\(809\) −9.36761 + 16.2252i −0.329348 + 0.570447i −0.982383 0.186881i \(-0.940162\pi\)
0.653035 + 0.757328i \(0.273495\pi\)
\(810\) 0 0
\(811\) −4.64229 −0.163013 −0.0815063 0.996673i \(-0.525973\pi\)
−0.0815063 + 0.996673i \(0.525973\pi\)
\(812\) −2.78734 1.95739i −0.0978163 0.0686911i
\(813\) 0 0
\(814\) 0.220628 + 0.382139i 0.00773300 + 0.0133939i
\(815\) 22.3375 38.6897i 0.782449 1.35524i
\(816\) 0 0
\(817\) −42.2121 73.1135i −1.47682 2.55792i
\(818\) −23.2050 −0.811344
\(819\) 0 0
\(820\) 3.74876 0.130912
\(821\) 8.95582 + 15.5119i 0.312560 + 0.541370i 0.978916 0.204264i \(-0.0654800\pi\)
−0.666356 + 0.745634i \(0.732147\pi\)
\(822\) 0 0
\(823\) 13.7972 23.8974i 0.480938 0.833010i −0.518822 0.854882i \(-0.673629\pi\)
0.999761 + 0.0218723i \(0.00696272\pi\)
\(824\) −3.52465 6.10487i −0.122787 0.212673i
\(825\) 0 0
\(826\) 1.10367 12.4196i 0.0384018 0.432133i
\(827\) −27.2202 −0.946538 −0.473269 0.880918i \(-0.656926\pi\)
−0.473269 + 0.880918i \(0.656926\pi\)
\(828\) 0 0
\(829\) −9.70996 + 16.8181i −0.337241 + 0.584118i −0.983913 0.178650i \(-0.942827\pi\)
0.646672 + 0.762768i \(0.276160\pi\)
\(830\) −29.2436 + 50.6514i −1.01506 + 1.75814i
\(831\) 0 0
\(832\) −26.9641 −0.934810
\(833\) −17.9341 + 21.2548i −0.621381 + 0.736436i
\(834\) 0 0
\(835\) −23.7218 41.0873i −0.820926 1.42189i
\(836\) 1.30090 2.25323i 0.0449926 0.0779295i
\(837\) 0 0
\(838\) −7.63018 13.2159i −0.263580 0.456534i
\(839\) −42.1143 −1.45395 −0.726973 0.686666i \(-0.759073\pi\)
−0.726973 + 0.686666i \(0.759073\pi\)
\(840\) 0 0
\(841\) −14.8945 −0.513605
\(842\) 17.0501 + 29.5317i 0.587587 + 1.01773i
\(843\) 0 0
\(844\) −3.02246 + 5.23505i −0.104037 + 0.180198i
\(845\) −7.32521 12.6876i −0.251995 0.436468i
\(846\) 0 0
\(847\) 2.39939 1.11487i 0.0824440 0.0383072i
\(848\) −41.3699 −1.42065
\(849\) 0 0
\(850\) −26.4577 + 45.8261i −0.907492 + 1.57182i
\(851\) 0.773186 1.33920i 0.0265045 0.0459071i
\(852\) 0 0
\(853\) −53.7179 −1.83926 −0.919632 0.392780i \(-0.871513\pi\)
−0.919632 + 0.392780i \(0.871513\pi\)
\(854\) −1.30555 0.916818i −0.0446750 0.0313729i
\(855\) 0 0
\(856\) −16.3662 28.3471i −0.559386 0.968885i
\(857\) −3.48424 + 6.03488i −0.119019 + 0.206148i −0.919379 0.393372i \(-0.871308\pi\)
0.800360 + 0.599520i \(0.204642\pi\)
\(858\) 0 0
\(859\) 16.8147 + 29.1239i 0.573710 + 0.993696i 0.996180 + 0.0873187i \(0.0278299\pi\)
−0.422470 + 0.906377i \(0.638837\pi\)
\(860\) 14.9345 0.509263
\(861\) 0 0
\(862\) −2.80229 −0.0954462
\(863\) 22.0486 + 38.1893i 0.750544 + 1.29998i 0.947560 + 0.319579i \(0.103542\pi\)
−0.197016 + 0.980400i \(0.563125\pi\)
\(864\) 0 0
\(865\) −7.13458 + 12.3575i −0.242583 + 0.420166i
\(866\) −10.6097 18.3765i −0.360531 0.624459i
\(867\) 0 0
\(868\) 5.54594 2.57689i 0.188241 0.0874655i
\(869\) 0.719627 0.0244117
\(870\) 0 0
\(871\) −3.92285 + 6.79457i −0.132921 + 0.230225i
\(872\) 3.30606 5.72627i 0.111957 0.193916i
\(873\) 0 0
\(874\) 44.0843 1.49117
\(875\) 4.90492 55.1948i 0.165817 1.86592i
\(876\) 0 0
\(877\) −5.07248 8.78579i −0.171285 0.296675i 0.767584 0.640948i \(-0.221459\pi\)
−0.938870 + 0.344273i \(0.888125\pi\)
\(878\) −0.484682 + 0.839494i −0.0163572 + 0.0283315i
\(879\) 0 0
\(880\) −6.26198 10.8461i −0.211091 0.365621i
\(881\) −32.4394 −1.09291 −0.546455 0.837489i \(-0.684023\pi\)
−0.546455 + 0.837489i \(0.684023\pi\)
\(882\) 0 0
\(883\) 25.0795 0.843992 0.421996 0.906598i \(-0.361330\pi\)
0.421996 + 0.906598i \(0.361330\pi\)
\(884\) 2.07197 + 3.58875i 0.0696878 + 0.120703i
\(885\) 0 0
\(886\) −25.7865 + 44.6636i −0.866315 + 1.50050i
\(887\) −26.3127 45.5749i −0.883493 1.53025i −0.847432 0.530905i \(-0.821852\pi\)
−0.0360611 0.999350i \(-0.511481\pi\)
\(888\) 0 0
\(889\) −1.26895 + 14.2794i −0.0425591 + 0.478915i
\(890\) 62.3084 2.08858
\(891\) 0 0
\(892\) 2.84245 4.92327i 0.0951722 0.164843i
\(893\) 6.28970 10.8941i 0.210477 0.364556i
\(894\) 0 0
\(895\) 38.8861 1.29982
\(896\) −18.1738 + 8.44437i −0.607144 + 0.282106i
\(897\) 0 0
\(898\) 4.96863 + 8.60592i 0.165805 + 0.287183i
\(899\) −12.6631 + 21.9331i −0.422337 + 0.731510i
\(900\) 0 0
\(901\) 25.7051 + 44.5226i 0.856361 + 1.48326i
\(902\) −3.59401 −0.119667
\(903\) 0 0
\(904\) 35.1098 1.16773
\(905\) −15.8112 27.3857i −0.525581 0.910332i
\(906\) 0 0
\(907\) 18.1814 31.4911i 0.603704 1.04565i −0.388551 0.921427i \(-0.627024\pi\)
0.992255 0.124219i \(-0.0396425\pi\)
\(908\) 0.402438 + 0.697043i 0.0133554 + 0.0231322i
\(909\) 0 0
\(910\) 33.2278 + 23.3341i 1.10149 + 0.773517i
\(911\) 14.4516 0.478802 0.239401 0.970921i \(-0.423049\pi\)
0.239401 + 0.970921i \(0.423049\pi\)
\(912\) 0 0
\(913\) −5.79878 + 10.0438i −0.191912 + 0.332401i
\(914\) 16.9701 29.3930i 0.561320 0.972235i
\(915\) 0 0
\(916\) 5.98140 0.197631
\(917\) 4.95702 2.30326i 0.163695 0.0760602i
\(918\) 0 0
\(919\) −22.8306 39.5437i −0.753111 1.30443i −0.946308 0.323266i \(-0.895219\pi\)
0.193197 0.981160i \(-0.438114\pi\)
\(920\) −26.6507 + 46.1604i −0.878648 + 1.52186i
\(921\) 0 0
\(922\) −8.02559 13.9007i −0.264309 0.457796i
\(923\) −15.2261 −0.501174
\(924\) 0 0
\(925\) 3.54637 0.116604
\(926\) 24.3068 + 42.1006i 0.798772 + 1.38351i
\(927\) 0 0
\(928\) −3.59849 + 6.23277i −0.118126 + 0.204601i
\(929\) −22.6831 39.2882i −0.744207 1.28900i −0.950564 0.310528i \(-0.899494\pi\)
0.206357 0.978477i \(-0.433839\pi\)
\(930\) 0 0
\(931\) 18.0365 + 49.9793i 0.591121 + 1.63800i
\(932\) −1.91627 −0.0627695
\(933\) 0 0
\(934\) −14.1741 + 24.5503i −0.463791 + 0.803310i
\(935\) −7.78173 + 13.4784i −0.254490 + 0.440789i
\(936\) 0 0
\(937\) 14.7757 0.482699 0.241350 0.970438i \(-0.422410\pi\)
0.241350 + 0.970438i \(0.422410\pi\)
\(938\) −0.777298 + 8.74689i −0.0253797 + 0.285596i
\(939\) 0 0
\(940\) 1.11264 + 1.92715i 0.0362903 + 0.0628566i
\(941\) −7.96057 + 13.7881i −0.259507 + 0.449480i −0.966110 0.258131i \(-0.916893\pi\)
0.706603 + 0.707610i \(0.250227\pi\)
\(942\) 0 0
\(943\) 6.29757 + 10.9077i 0.205077 + 0.355204i
\(944\) −11.7035 −0.380915
\(945\) 0 0
\(946\) −14.3180 −0.465519
\(947\) 12.1792 + 21.0950i 0.395770 + 0.685494i 0.993199 0.116428i \(-0.0371444\pi\)
−0.597429 + 0.801922i \(0.703811\pi\)
\(948\) 0 0
\(949\) −13.2944 + 23.0267i −0.431556 + 0.747477i
\(950\) 50.5503 + 87.5557i 1.64007 + 2.84068i
\(951\) 0 0
\(952\) 25.9431 + 18.2185i 0.840822 + 0.590464i
\(953\) 47.2682 1.53117 0.765583 0.643337i \(-0.222450\pi\)
0.765583 + 0.643337i \(0.222450\pi\)
\(954\) 0 0
\(955\) −10.9368 + 18.9430i −0.353906 + 0.612983i
\(956\) −3.05314 + 5.28820i −0.0987457 + 0.171033i
\(957\) 0 0
\(958\) −12.1628 −0.392962
\(959\) −9.05713 6.36033i −0.292470 0.205386i
\(960\) 0 0
\(961\) −7.23639 12.5338i −0.233432 0.404316i
\(962\) −0.671383 + 1.16287i −0.0216463 + 0.0374924i
\(963\) 0 0
\(964\) 0.511445 + 0.885849i 0.0164725 + 0.0285313i
\(965\) −43.6158 −1.40404
\(966\) 0 0
\(967\) 37.7062 1.21255 0.606275 0.795255i \(-0.292663\pi\)
0.606275 + 0.795255i \(0.292663\pi\)
\(968\) −1.50796 2.61187i −0.0484678 0.0839487i
\(969\) 0 0
\(970\) 33.2052 57.5131i 1.06615 1.84663i
\(971\) 0.995759 + 1.72471i 0.0319554 + 0.0553484i 0.881561 0.472070i \(-0.156493\pi\)
−0.849605 + 0.527419i \(0.823160\pi\)
\(972\) 0 0
\(973\) −0.845618 + 9.51569i −0.0271093 + 0.305059i
\(974\) −51.7947 −1.65961
\(975\) 0 0
\(976\) −0.748711 + 1.29681i −0.0239657 + 0.0415097i
\(977\) −13.6300 + 23.6079i −0.436063 + 0.755284i −0.997382 0.0723163i \(-0.976961\pi\)
0.561319 + 0.827600i \(0.310294\pi\)
\(978\) 0 0
\(979\) 12.3553 0.394877
\(980\) −9.25207 1.65747i −0.295547 0.0529460i
\(981\) 0 0
\(982\) −13.0642 22.6278i −0.416894 0.722082i
\(983\) 5.07112 8.78343i 0.161744 0.280148i −0.773751 0.633490i \(-0.781622\pi\)
0.935494 + 0.353342i \(0.114955\pi\)
\(984\) 0 0
\(985\) 1.26235 + 2.18645i 0.0402217 + 0.0696660i
\(986\) −19.2083 −0.611718
\(987\) 0 0
\(988\) 7.91744 0.251887
\(989\) 25.0886 + 43.4548i 0.797772 + 1.38178i
\(990\) 0 0
\(991\) −11.0702 + 19.1741i −0.351656 + 0.609086i −0.986540 0.163521i \(-0.947715\pi\)
0.634884 + 0.772608i \(0.281048\pi\)
\(992\) −6.46104 11.1908i −0.205138 0.355310i
\(993\) 0 0
\(994\) −15.4551 + 7.18113i −0.490206 + 0.227772i
\(995\) 98.8584 3.13402
\(996\) 0 0
\(997\) −24.4492 + 42.3473i −0.774314 + 1.34115i 0.160865 + 0.986976i \(0.448571\pi\)
−0.935179 + 0.354175i \(0.884762\pi\)
\(998\) 23.3622 40.4645i 0.739518 1.28088i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.i.i.298.3 8
3.2 odd 2 231.2.i.e.67.2 8
7.2 even 3 inner 693.2.i.i.100.3 8
7.3 odd 6 4851.2.a.bu.1.2 4
7.4 even 3 4851.2.a.bt.1.2 4
21.2 odd 6 231.2.i.e.100.2 yes 8
21.11 odd 6 1617.2.a.z.1.3 4
21.17 even 6 1617.2.a.x.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.i.e.67.2 8 3.2 odd 2
231.2.i.e.100.2 yes 8 21.2 odd 6
693.2.i.i.100.3 8 7.2 even 3 inner
693.2.i.i.298.3 8 1.1 even 1 trivial
1617.2.a.x.1.3 4 21.17 even 6
1617.2.a.z.1.3 4 21.11 odd 6
4851.2.a.bt.1.2 4 7.4 even 3
4851.2.a.bu.1.2 4 7.3 odd 6