Properties

Label 693.4.a.d.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -4.00000 q^{4} -11.0000 q^{5} -7.00000 q^{7} +24.0000 q^{8} +22.0000 q^{10} -11.0000 q^{11} -5.00000 q^{13} +14.0000 q^{14} -16.0000 q^{16} +118.000 q^{17} -105.000 q^{19} +44.0000 q^{20} +22.0000 q^{22} +68.0000 q^{23} -4.00000 q^{25} +10.0000 q^{26} +28.0000 q^{28} +195.000 q^{29} +214.000 q^{31} -160.000 q^{32} -236.000 q^{34} +77.0000 q^{35} +33.0000 q^{37} +210.000 q^{38} -264.000 q^{40} +376.000 q^{41} -168.000 q^{43} +44.0000 q^{44} -136.000 q^{46} -61.0000 q^{47} +49.0000 q^{49} +8.00000 q^{50} +20.0000 q^{52} -24.0000 q^{53} +121.000 q^{55} -168.000 q^{56} -390.000 q^{58} -625.000 q^{59} -558.000 q^{61} -428.000 q^{62} +448.000 q^{64} +55.0000 q^{65} +173.000 q^{67} -472.000 q^{68} -154.000 q^{70} -168.000 q^{71} +973.000 q^{73} -66.0000 q^{74} +420.000 q^{76} +77.0000 q^{77} -1072.00 q^{79} +176.000 q^{80} -752.000 q^{82} -1458.00 q^{83} -1298.00 q^{85} +336.000 q^{86} -264.000 q^{88} +198.000 q^{89} +35.0000 q^{91} -272.000 q^{92} +122.000 q^{94} +1155.00 q^{95} -352.000 q^{97} -98.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −11.0000 −0.983870 −0.491935 0.870632i \(-0.663710\pi\)
−0.491935 + 0.870632i \(0.663710\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 24.0000 1.06066
\(9\) 0 0
\(10\) 22.0000 0.695701
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −5.00000 −0.106673 −0.0533366 0.998577i \(-0.516986\pi\)
−0.0533366 + 0.998577i \(0.516986\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) 118.000 1.68348 0.841741 0.539881i \(-0.181531\pi\)
0.841741 + 0.539881i \(0.181531\pi\)
\(18\) 0 0
\(19\) −105.000 −1.26782 −0.633912 0.773405i \(-0.718552\pi\)
−0.633912 + 0.773405i \(0.718552\pi\)
\(20\) 44.0000 0.491935
\(21\) 0 0
\(22\) 22.0000 0.213201
\(23\) 68.0000 0.616477 0.308239 0.951309i \(-0.400260\pi\)
0.308239 + 0.951309i \(0.400260\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.0320000
\(26\) 10.0000 0.0754293
\(27\) 0 0
\(28\) 28.0000 0.188982
\(29\) 195.000 1.24864 0.624321 0.781168i \(-0.285376\pi\)
0.624321 + 0.781168i \(0.285376\pi\)
\(30\) 0 0
\(31\) 214.000 1.23986 0.619928 0.784659i \(-0.287162\pi\)
0.619928 + 0.784659i \(0.287162\pi\)
\(32\) −160.000 −0.883883
\(33\) 0 0
\(34\) −236.000 −1.19040
\(35\) 77.0000 0.371868
\(36\) 0 0
\(37\) 33.0000 0.146626 0.0733131 0.997309i \(-0.476643\pi\)
0.0733131 + 0.997309i \(0.476643\pi\)
\(38\) 210.000 0.896487
\(39\) 0 0
\(40\) −264.000 −1.04355
\(41\) 376.000 1.43223 0.716114 0.697984i \(-0.245919\pi\)
0.716114 + 0.697984i \(0.245919\pi\)
\(42\) 0 0
\(43\) −168.000 −0.595808 −0.297904 0.954596i \(-0.596288\pi\)
−0.297904 + 0.954596i \(0.596288\pi\)
\(44\) 44.0000 0.150756
\(45\) 0 0
\(46\) −136.000 −0.435915
\(47\) −61.0000 −0.189314 −0.0946571 0.995510i \(-0.530175\pi\)
−0.0946571 + 0.995510i \(0.530175\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 8.00000 0.0226274
\(51\) 0 0
\(52\) 20.0000 0.0533366
\(53\) −24.0000 −0.0622010 −0.0311005 0.999516i \(-0.509901\pi\)
−0.0311005 + 0.999516i \(0.509901\pi\)
\(54\) 0 0
\(55\) 121.000 0.296648
\(56\) −168.000 −0.400892
\(57\) 0 0
\(58\) −390.000 −0.882923
\(59\) −625.000 −1.37912 −0.689560 0.724229i \(-0.742196\pi\)
−0.689560 + 0.724229i \(0.742196\pi\)
\(60\) 0 0
\(61\) −558.000 −1.17122 −0.585611 0.810592i \(-0.699145\pi\)
−0.585611 + 0.810592i \(0.699145\pi\)
\(62\) −428.000 −0.876711
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) 55.0000 0.104952
\(66\) 0 0
\(67\) 173.000 0.315452 0.157726 0.987483i \(-0.449584\pi\)
0.157726 + 0.987483i \(0.449584\pi\)
\(68\) −472.000 −0.841741
\(69\) 0 0
\(70\) −154.000 −0.262950
\(71\) −168.000 −0.280816 −0.140408 0.990094i \(-0.544841\pi\)
−0.140408 + 0.990094i \(0.544841\pi\)
\(72\) 0 0
\(73\) 973.000 1.56001 0.780007 0.625771i \(-0.215215\pi\)
0.780007 + 0.625771i \(0.215215\pi\)
\(74\) −66.0000 −0.103680
\(75\) 0 0
\(76\) 420.000 0.633912
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −1072.00 −1.52670 −0.763351 0.645984i \(-0.776447\pi\)
−0.763351 + 0.645984i \(0.776447\pi\)
\(80\) 176.000 0.245967
\(81\) 0 0
\(82\) −752.000 −1.01274
\(83\) −1458.00 −1.92815 −0.964074 0.265634i \(-0.914419\pi\)
−0.964074 + 0.265634i \(0.914419\pi\)
\(84\) 0 0
\(85\) −1298.00 −1.65633
\(86\) 336.000 0.421300
\(87\) 0 0
\(88\) −264.000 −0.319801
\(89\) 198.000 0.235820 0.117910 0.993024i \(-0.462381\pi\)
0.117910 + 0.993024i \(0.462381\pi\)
\(90\) 0 0
\(91\) 35.0000 0.0403186
\(92\) −272.000 −0.308239
\(93\) 0 0
\(94\) 122.000 0.133865
\(95\) 1155.00 1.24737
\(96\) 0 0
\(97\) −352.000 −0.368456 −0.184228 0.982884i \(-0.558978\pi\)
−0.184228 + 0.982884i \(0.558978\pi\)
\(98\) −98.0000 −0.101015
\(99\) 0 0
\(100\) 16.0000 0.0160000
\(101\) −706.000 −0.695541 −0.347770 0.937580i \(-0.613061\pi\)
−0.347770 + 0.937580i \(0.613061\pi\)
\(102\) 0 0
\(103\) 1034.00 0.989156 0.494578 0.869133i \(-0.335323\pi\)
0.494578 + 0.869133i \(0.335323\pi\)
\(104\) −120.000 −0.113144
\(105\) 0 0
\(106\) 48.0000 0.0439828
\(107\) 675.000 0.609857 0.304929 0.952375i \(-0.401367\pi\)
0.304929 + 0.952375i \(0.401367\pi\)
\(108\) 0 0
\(109\) −1142.00 −1.00352 −0.501760 0.865007i \(-0.667314\pi\)
−0.501760 + 0.865007i \(0.667314\pi\)
\(110\) −242.000 −0.209762
\(111\) 0 0
\(112\) 112.000 0.0944911
\(113\) −162.000 −0.134864 −0.0674322 0.997724i \(-0.521481\pi\)
−0.0674322 + 0.997724i \(0.521481\pi\)
\(114\) 0 0
\(115\) −748.000 −0.606534
\(116\) −780.000 −0.624321
\(117\) 0 0
\(118\) 1250.00 0.975185
\(119\) −826.000 −0.636297
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1116.00 0.828179
\(123\) 0 0
\(124\) −856.000 −0.619928
\(125\) 1419.00 1.01535
\(126\) 0 0
\(127\) 1130.00 0.789538 0.394769 0.918780i \(-0.370825\pi\)
0.394769 + 0.918780i \(0.370825\pi\)
\(128\) 384.000 0.265165
\(129\) 0 0
\(130\) −110.000 −0.0742126
\(131\) −2208.00 −1.47262 −0.736312 0.676642i \(-0.763435\pi\)
−0.736312 + 0.676642i \(0.763435\pi\)
\(132\) 0 0
\(133\) 735.000 0.479192
\(134\) −346.000 −0.223059
\(135\) 0 0
\(136\) 2832.00 1.78560
\(137\) 1658.00 1.03396 0.516980 0.855998i \(-0.327056\pi\)
0.516980 + 0.855998i \(0.327056\pi\)
\(138\) 0 0
\(139\) −2120.00 −1.29364 −0.646820 0.762642i \(-0.723902\pi\)
−0.646820 + 0.762642i \(0.723902\pi\)
\(140\) −308.000 −0.185934
\(141\) 0 0
\(142\) 336.000 0.198567
\(143\) 55.0000 0.0321632
\(144\) 0 0
\(145\) −2145.00 −1.22850
\(146\) −1946.00 −1.10310
\(147\) 0 0
\(148\) −132.000 −0.0733131
\(149\) 23.0000 0.0126459 0.00632293 0.999980i \(-0.497987\pi\)
0.00632293 + 0.999980i \(0.497987\pi\)
\(150\) 0 0
\(151\) −1810.00 −0.975468 −0.487734 0.872992i \(-0.662176\pi\)
−0.487734 + 0.872992i \(0.662176\pi\)
\(152\) −2520.00 −1.34473
\(153\) 0 0
\(154\) −154.000 −0.0805823
\(155\) −2354.00 −1.21986
\(156\) 0 0
\(157\) −868.000 −0.441235 −0.220618 0.975360i \(-0.570807\pi\)
−0.220618 + 0.975360i \(0.570807\pi\)
\(158\) 2144.00 1.07954
\(159\) 0 0
\(160\) 1760.00 0.869626
\(161\) −476.000 −0.233007
\(162\) 0 0
\(163\) −2267.00 −1.08936 −0.544678 0.838645i \(-0.683348\pi\)
−0.544678 + 0.838645i \(0.683348\pi\)
\(164\) −1504.00 −0.716114
\(165\) 0 0
\(166\) 2916.00 1.36341
\(167\) −3024.00 −1.40122 −0.700611 0.713543i \(-0.747089\pi\)
−0.700611 + 0.713543i \(0.747089\pi\)
\(168\) 0 0
\(169\) −2172.00 −0.988621
\(170\) 2596.00 1.17120
\(171\) 0 0
\(172\) 672.000 0.297904
\(173\) −1272.00 −0.559008 −0.279504 0.960145i \(-0.590170\pi\)
−0.279504 + 0.960145i \(0.590170\pi\)
\(174\) 0 0
\(175\) 28.0000 0.0120949
\(176\) 176.000 0.0753778
\(177\) 0 0
\(178\) −396.000 −0.166750
\(179\) 3228.00 1.34789 0.673944 0.738782i \(-0.264599\pi\)
0.673944 + 0.738782i \(0.264599\pi\)
\(180\) 0 0
\(181\) −3452.00 −1.41760 −0.708799 0.705411i \(-0.750763\pi\)
−0.708799 + 0.705411i \(0.750763\pi\)
\(182\) −70.0000 −0.0285096
\(183\) 0 0
\(184\) 1632.00 0.653873
\(185\) −363.000 −0.144261
\(186\) 0 0
\(187\) −1298.00 −0.507589
\(188\) 244.000 0.0946571
\(189\) 0 0
\(190\) −2310.00 −0.882026
\(191\) −2074.00 −0.785704 −0.392852 0.919602i \(-0.628511\pi\)
−0.392852 + 0.919602i \(0.628511\pi\)
\(192\) 0 0
\(193\) 1204.00 0.449046 0.224523 0.974469i \(-0.427918\pi\)
0.224523 + 0.974469i \(0.427918\pi\)
\(194\) 704.000 0.260537
\(195\) 0 0
\(196\) −196.000 −0.0714286
\(197\) 2086.00 0.754423 0.377212 0.926127i \(-0.376883\pi\)
0.377212 + 0.926127i \(0.376883\pi\)
\(198\) 0 0
\(199\) 1344.00 0.478762 0.239381 0.970926i \(-0.423056\pi\)
0.239381 + 0.970926i \(0.423056\pi\)
\(200\) −96.0000 −0.0339411
\(201\) 0 0
\(202\) 1412.00 0.491822
\(203\) −1365.00 −0.471942
\(204\) 0 0
\(205\) −4136.00 −1.40913
\(206\) −2068.00 −0.699439
\(207\) 0 0
\(208\) 80.0000 0.0266683
\(209\) 1155.00 0.382263
\(210\) 0 0
\(211\) 1302.00 0.424803 0.212401 0.977183i \(-0.431872\pi\)
0.212401 + 0.977183i \(0.431872\pi\)
\(212\) 96.0000 0.0311005
\(213\) 0 0
\(214\) −1350.00 −0.431234
\(215\) 1848.00 0.586198
\(216\) 0 0
\(217\) −1498.00 −0.468622
\(218\) 2284.00 0.709596
\(219\) 0 0
\(220\) −484.000 −0.148324
\(221\) −590.000 −0.179582
\(222\) 0 0
\(223\) −926.000 −0.278070 −0.139035 0.990287i \(-0.544400\pi\)
−0.139035 + 0.990287i \(0.544400\pi\)
\(224\) 1120.00 0.334077
\(225\) 0 0
\(226\) 324.000 0.0953635
\(227\) 4206.00 1.22979 0.614894 0.788610i \(-0.289199\pi\)
0.614894 + 0.788610i \(0.289199\pi\)
\(228\) 0 0
\(229\) −1608.00 −0.464016 −0.232008 0.972714i \(-0.574530\pi\)
−0.232008 + 0.972714i \(0.574530\pi\)
\(230\) 1496.00 0.428884
\(231\) 0 0
\(232\) 4680.00 1.32438
\(233\) −6402.00 −1.80004 −0.900019 0.435850i \(-0.856448\pi\)
−0.900019 + 0.435850i \(0.856448\pi\)
\(234\) 0 0
\(235\) 671.000 0.186260
\(236\) 2500.00 0.689560
\(237\) 0 0
\(238\) 1652.00 0.449930
\(239\) 1761.00 0.476609 0.238305 0.971190i \(-0.423408\pi\)
0.238305 + 0.971190i \(0.423408\pi\)
\(240\) 0 0
\(241\) 4951.00 1.32333 0.661664 0.749801i \(-0.269851\pi\)
0.661664 + 0.749801i \(0.269851\pi\)
\(242\) −242.000 −0.0642824
\(243\) 0 0
\(244\) 2232.00 0.585611
\(245\) −539.000 −0.140553
\(246\) 0 0
\(247\) 525.000 0.135243
\(248\) 5136.00 1.31507
\(249\) 0 0
\(250\) −2838.00 −0.717964
\(251\) 3553.00 0.893480 0.446740 0.894664i \(-0.352585\pi\)
0.446740 + 0.894664i \(0.352585\pi\)
\(252\) 0 0
\(253\) −748.000 −0.185875
\(254\) −2260.00 −0.558287
\(255\) 0 0
\(256\) −4352.00 −1.06250
\(257\) 4837.00 1.17402 0.587011 0.809579i \(-0.300304\pi\)
0.587011 + 0.809579i \(0.300304\pi\)
\(258\) 0 0
\(259\) −231.000 −0.0554195
\(260\) −220.000 −0.0524762
\(261\) 0 0
\(262\) 4416.00 1.04130
\(263\) 5951.00 1.39526 0.697632 0.716456i \(-0.254237\pi\)
0.697632 + 0.716456i \(0.254237\pi\)
\(264\) 0 0
\(265\) 264.000 0.0611977
\(266\) −1470.00 −0.338840
\(267\) 0 0
\(268\) −692.000 −0.157726
\(269\) −6854.00 −1.55352 −0.776758 0.629799i \(-0.783137\pi\)
−0.776758 + 0.629799i \(0.783137\pi\)
\(270\) 0 0
\(271\) −4429.00 −0.992777 −0.496389 0.868100i \(-0.665341\pi\)
−0.496389 + 0.868100i \(0.665341\pi\)
\(272\) −1888.00 −0.420871
\(273\) 0 0
\(274\) −3316.00 −0.731120
\(275\) 44.0000 0.00964836
\(276\) 0 0
\(277\) −1700.00 −0.368748 −0.184374 0.982856i \(-0.559026\pi\)
−0.184374 + 0.982856i \(0.559026\pi\)
\(278\) 4240.00 0.914742
\(279\) 0 0
\(280\) 1848.00 0.394425
\(281\) −4161.00 −0.883361 −0.441681 0.897172i \(-0.645618\pi\)
−0.441681 + 0.897172i \(0.645618\pi\)
\(282\) 0 0
\(283\) 1903.00 0.399723 0.199861 0.979824i \(-0.435951\pi\)
0.199861 + 0.979824i \(0.435951\pi\)
\(284\) 672.000 0.140408
\(285\) 0 0
\(286\) −110.000 −0.0227428
\(287\) −2632.00 −0.541331
\(288\) 0 0
\(289\) 9011.00 1.83411
\(290\) 4290.00 0.868681
\(291\) 0 0
\(292\) −3892.00 −0.780007
\(293\) 8352.00 1.66529 0.832643 0.553809i \(-0.186826\pi\)
0.832643 + 0.553809i \(0.186826\pi\)
\(294\) 0 0
\(295\) 6875.00 1.35687
\(296\) 792.000 0.155520
\(297\) 0 0
\(298\) −46.0000 −0.00894197
\(299\) −340.000 −0.0657616
\(300\) 0 0
\(301\) 1176.00 0.225194
\(302\) 3620.00 0.689760
\(303\) 0 0
\(304\) 1680.00 0.316956
\(305\) 6138.00 1.15233
\(306\) 0 0
\(307\) 8900.00 1.65456 0.827280 0.561790i \(-0.189887\pi\)
0.827280 + 0.561790i \(0.189887\pi\)
\(308\) −308.000 −0.0569803
\(309\) 0 0
\(310\) 4708.00 0.862569
\(311\) −5976.00 −1.08961 −0.544804 0.838564i \(-0.683396\pi\)
−0.544804 + 0.838564i \(0.683396\pi\)
\(312\) 0 0
\(313\) −2854.00 −0.515392 −0.257696 0.966226i \(-0.582963\pi\)
−0.257696 + 0.966226i \(0.582963\pi\)
\(314\) 1736.00 0.312000
\(315\) 0 0
\(316\) 4288.00 0.763351
\(317\) −3152.00 −0.558467 −0.279233 0.960223i \(-0.590080\pi\)
−0.279233 + 0.960223i \(0.590080\pi\)
\(318\) 0 0
\(319\) −2145.00 −0.376479
\(320\) −4928.00 −0.860886
\(321\) 0 0
\(322\) 952.000 0.164761
\(323\) −12390.0 −2.13436
\(324\) 0 0
\(325\) 20.0000 0.00341354
\(326\) 4534.00 0.770292
\(327\) 0 0
\(328\) 9024.00 1.51911
\(329\) 427.000 0.0715540
\(330\) 0 0
\(331\) 10432.0 1.73231 0.866155 0.499776i \(-0.166584\pi\)
0.866155 + 0.499776i \(0.166584\pi\)
\(332\) 5832.00 0.964074
\(333\) 0 0
\(334\) 6048.00 0.990814
\(335\) −1903.00 −0.310364
\(336\) 0 0
\(337\) 2036.00 0.329104 0.164552 0.986368i \(-0.447382\pi\)
0.164552 + 0.986368i \(0.447382\pi\)
\(338\) 4344.00 0.699061
\(339\) 0 0
\(340\) 5192.00 0.828164
\(341\) −2354.00 −0.373831
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −4032.00 −0.631950
\(345\) 0 0
\(346\) 2544.00 0.395278
\(347\) −4832.00 −0.747537 −0.373769 0.927522i \(-0.621935\pi\)
−0.373769 + 0.927522i \(0.621935\pi\)
\(348\) 0 0
\(349\) 4551.00 0.698021 0.349011 0.937119i \(-0.386518\pi\)
0.349011 + 0.937119i \(0.386518\pi\)
\(350\) −56.0000 −0.00855236
\(351\) 0 0
\(352\) 1760.00 0.266501
\(353\) −10785.0 −1.62614 −0.813070 0.582166i \(-0.802206\pi\)
−0.813070 + 0.582166i \(0.802206\pi\)
\(354\) 0 0
\(355\) 1848.00 0.276286
\(356\) −792.000 −0.117910
\(357\) 0 0
\(358\) −6456.00 −0.953101
\(359\) 6988.00 1.02733 0.513666 0.857990i \(-0.328287\pi\)
0.513666 + 0.857990i \(0.328287\pi\)
\(360\) 0 0
\(361\) 4166.00 0.607377
\(362\) 6904.00 1.00239
\(363\) 0 0
\(364\) −140.000 −0.0201593
\(365\) −10703.0 −1.53485
\(366\) 0 0
\(367\) 4342.00 0.617576 0.308788 0.951131i \(-0.400077\pi\)
0.308788 + 0.951131i \(0.400077\pi\)
\(368\) −1088.00 −0.154119
\(369\) 0 0
\(370\) 726.000 0.102008
\(371\) 168.000 0.0235098
\(372\) 0 0
\(373\) −12674.0 −1.75934 −0.879671 0.475582i \(-0.842237\pi\)
−0.879671 + 0.475582i \(0.842237\pi\)
\(374\) 2596.00 0.358920
\(375\) 0 0
\(376\) −1464.00 −0.200798
\(377\) −975.000 −0.133196
\(378\) 0 0
\(379\) −13181.0 −1.78644 −0.893222 0.449615i \(-0.851561\pi\)
−0.893222 + 0.449615i \(0.851561\pi\)
\(380\) −4620.00 −0.623687
\(381\) 0 0
\(382\) 4148.00 0.555576
\(383\) 1088.00 0.145155 0.0725773 0.997363i \(-0.476878\pi\)
0.0725773 + 0.997363i \(0.476878\pi\)
\(384\) 0 0
\(385\) −847.000 −0.112122
\(386\) −2408.00 −0.317523
\(387\) 0 0
\(388\) 1408.00 0.184228
\(389\) −1356.00 −0.176740 −0.0883701 0.996088i \(-0.528166\pi\)
−0.0883701 + 0.996088i \(0.528166\pi\)
\(390\) 0 0
\(391\) 8024.00 1.03783
\(392\) 1176.00 0.151523
\(393\) 0 0
\(394\) −4172.00 −0.533458
\(395\) 11792.0 1.50208
\(396\) 0 0
\(397\) −8102.00 −1.02425 −0.512126 0.858911i \(-0.671142\pi\)
−0.512126 + 0.858911i \(0.671142\pi\)
\(398\) −2688.00 −0.338536
\(399\) 0 0
\(400\) 64.0000 0.00800000
\(401\) 12716.0 1.58356 0.791779 0.610808i \(-0.209155\pi\)
0.791779 + 0.610808i \(0.209155\pi\)
\(402\) 0 0
\(403\) −1070.00 −0.132259
\(404\) 2824.00 0.347770
\(405\) 0 0
\(406\) 2730.00 0.333713
\(407\) −363.000 −0.0442094
\(408\) 0 0
\(409\) −8766.00 −1.05978 −0.529891 0.848066i \(-0.677767\pi\)
−0.529891 + 0.848066i \(0.677767\pi\)
\(410\) 8272.00 0.996402
\(411\) 0 0
\(412\) −4136.00 −0.494578
\(413\) 4375.00 0.521258
\(414\) 0 0
\(415\) 16038.0 1.89705
\(416\) 800.000 0.0942866
\(417\) 0 0
\(418\) −2310.00 −0.270301
\(419\) 5729.00 0.667971 0.333986 0.942578i \(-0.391606\pi\)
0.333986 + 0.942578i \(0.391606\pi\)
\(420\) 0 0
\(421\) 8983.00 1.03992 0.519958 0.854192i \(-0.325948\pi\)
0.519958 + 0.854192i \(0.325948\pi\)
\(422\) −2604.00 −0.300381
\(423\) 0 0
\(424\) −576.000 −0.0659741
\(425\) −472.000 −0.0538714
\(426\) 0 0
\(427\) 3906.00 0.442681
\(428\) −2700.00 −0.304929
\(429\) 0 0
\(430\) −3696.00 −0.414505
\(431\) 10239.0 1.14430 0.572152 0.820147i \(-0.306109\pi\)
0.572152 + 0.820147i \(0.306109\pi\)
\(432\) 0 0
\(433\) −9932.00 −1.10231 −0.551156 0.834402i \(-0.685813\pi\)
−0.551156 + 0.834402i \(0.685813\pi\)
\(434\) 2996.00 0.331365
\(435\) 0 0
\(436\) 4568.00 0.501760
\(437\) −7140.00 −0.781585
\(438\) 0 0
\(439\) −9893.00 −1.07555 −0.537776 0.843088i \(-0.680735\pi\)
−0.537776 + 0.843088i \(0.680735\pi\)
\(440\) 2904.00 0.314643
\(441\) 0 0
\(442\) 1180.00 0.126984
\(443\) −15176.0 −1.62762 −0.813808 0.581134i \(-0.802609\pi\)
−0.813808 + 0.581134i \(0.802609\pi\)
\(444\) 0 0
\(445\) −2178.00 −0.232016
\(446\) 1852.00 0.196625
\(447\) 0 0
\(448\) −3136.00 −0.330719
\(449\) −856.000 −0.0899714 −0.0449857 0.998988i \(-0.514324\pi\)
−0.0449857 + 0.998988i \(0.514324\pi\)
\(450\) 0 0
\(451\) −4136.00 −0.431833
\(452\) 648.000 0.0674322
\(453\) 0 0
\(454\) −8412.00 −0.869592
\(455\) −385.000 −0.0396683
\(456\) 0 0
\(457\) −8280.00 −0.847532 −0.423766 0.905772i \(-0.639292\pi\)
−0.423766 + 0.905772i \(0.639292\pi\)
\(458\) 3216.00 0.328109
\(459\) 0 0
\(460\) 2992.00 0.303267
\(461\) −2088.00 −0.210950 −0.105475 0.994422i \(-0.533636\pi\)
−0.105475 + 0.994422i \(0.533636\pi\)
\(462\) 0 0
\(463\) −19283.0 −1.93554 −0.967772 0.251827i \(-0.918968\pi\)
−0.967772 + 0.251827i \(0.918968\pi\)
\(464\) −3120.00 −0.312160
\(465\) 0 0
\(466\) 12804.0 1.27282
\(467\) −10797.0 −1.06986 −0.534931 0.844896i \(-0.679662\pi\)
−0.534931 + 0.844896i \(0.679662\pi\)
\(468\) 0 0
\(469\) −1211.00 −0.119230
\(470\) −1342.00 −0.131706
\(471\) 0 0
\(472\) −15000.0 −1.46278
\(473\) 1848.00 0.179643
\(474\) 0 0
\(475\) 420.000 0.0405704
\(476\) 3304.00 0.318148
\(477\) 0 0
\(478\) −3522.00 −0.337014
\(479\) 2594.00 0.247438 0.123719 0.992317i \(-0.460518\pi\)
0.123719 + 0.992317i \(0.460518\pi\)
\(480\) 0 0
\(481\) −165.000 −0.0156411
\(482\) −9902.00 −0.935734
\(483\) 0 0
\(484\) −484.000 −0.0454545
\(485\) 3872.00 0.362512
\(486\) 0 0
\(487\) 12032.0 1.11955 0.559776 0.828644i \(-0.310887\pi\)
0.559776 + 0.828644i \(0.310887\pi\)
\(488\) −13392.0 −1.24227
\(489\) 0 0
\(490\) 1078.00 0.0993859
\(491\) −7949.00 −0.730618 −0.365309 0.930886i \(-0.619037\pi\)
−0.365309 + 0.930886i \(0.619037\pi\)
\(492\) 0 0
\(493\) 23010.0 2.10207
\(494\) −1050.00 −0.0956310
\(495\) 0 0
\(496\) −3424.00 −0.309964
\(497\) 1176.00 0.106138
\(498\) 0 0
\(499\) −17053.0 −1.52985 −0.764927 0.644117i \(-0.777225\pi\)
−0.764927 + 0.644117i \(0.777225\pi\)
\(500\) −5676.00 −0.507677
\(501\) 0 0
\(502\) −7106.00 −0.631785
\(503\) −6080.00 −0.538954 −0.269477 0.963007i \(-0.586851\pi\)
−0.269477 + 0.963007i \(0.586851\pi\)
\(504\) 0 0
\(505\) 7766.00 0.684322
\(506\) 1496.00 0.131433
\(507\) 0 0
\(508\) −4520.00 −0.394769
\(509\) −3510.00 −0.305654 −0.152827 0.988253i \(-0.548838\pi\)
−0.152827 + 0.988253i \(0.548838\pi\)
\(510\) 0 0
\(511\) −6811.00 −0.589630
\(512\) 5632.00 0.486136
\(513\) 0 0
\(514\) −9674.00 −0.830159
\(515\) −11374.0 −0.973201
\(516\) 0 0
\(517\) 671.000 0.0570804
\(518\) 462.000 0.0391875
\(519\) 0 0
\(520\) 1320.00 0.111319
\(521\) 5781.00 0.486123 0.243062 0.970011i \(-0.421848\pi\)
0.243062 + 0.970011i \(0.421848\pi\)
\(522\) 0 0
\(523\) −11959.0 −0.999867 −0.499934 0.866064i \(-0.666642\pi\)
−0.499934 + 0.866064i \(0.666642\pi\)
\(524\) 8832.00 0.736312
\(525\) 0 0
\(526\) −11902.0 −0.986600
\(527\) 25252.0 2.08728
\(528\) 0 0
\(529\) −7543.00 −0.619956
\(530\) −528.000 −0.0432733
\(531\) 0 0
\(532\) −2940.00 −0.239596
\(533\) −1880.00 −0.152780
\(534\) 0 0
\(535\) −7425.00 −0.600020
\(536\) 4152.00 0.334588
\(537\) 0 0
\(538\) 13708.0 1.09850
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 5692.00 0.452344 0.226172 0.974087i \(-0.427379\pi\)
0.226172 + 0.974087i \(0.427379\pi\)
\(542\) 8858.00 0.701999
\(543\) 0 0
\(544\) −18880.0 −1.48800
\(545\) 12562.0 0.987334
\(546\) 0 0
\(547\) −5620.00 −0.439294 −0.219647 0.975579i \(-0.570491\pi\)
−0.219647 + 0.975579i \(0.570491\pi\)
\(548\) −6632.00 −0.516980
\(549\) 0 0
\(550\) −88.0000 −0.00682242
\(551\) −20475.0 −1.58306
\(552\) 0 0
\(553\) 7504.00 0.577039
\(554\) 3400.00 0.260744
\(555\) 0 0
\(556\) 8480.00 0.646820
\(557\) 16639.0 1.26574 0.632870 0.774258i \(-0.281877\pi\)
0.632870 + 0.774258i \(0.281877\pi\)
\(558\) 0 0
\(559\) 840.000 0.0635567
\(560\) −1232.00 −0.0929670
\(561\) 0 0
\(562\) 8322.00 0.624631
\(563\) −20168.0 −1.50973 −0.754867 0.655878i \(-0.772298\pi\)
−0.754867 + 0.655878i \(0.772298\pi\)
\(564\) 0 0
\(565\) 1782.00 0.132689
\(566\) −3806.00 −0.282647
\(567\) 0 0
\(568\) −4032.00 −0.297850
\(569\) 378.000 0.0278499 0.0139249 0.999903i \(-0.495567\pi\)
0.0139249 + 0.999903i \(0.495567\pi\)
\(570\) 0 0
\(571\) 3212.00 0.235408 0.117704 0.993049i \(-0.462447\pi\)
0.117704 + 0.993049i \(0.462447\pi\)
\(572\) −220.000 −0.0160816
\(573\) 0 0
\(574\) 5264.00 0.382779
\(575\) −272.000 −0.0197273
\(576\) 0 0
\(577\) 1086.00 0.0783549 0.0391774 0.999232i \(-0.487526\pi\)
0.0391774 + 0.999232i \(0.487526\pi\)
\(578\) −18022.0 −1.29691
\(579\) 0 0
\(580\) 8580.00 0.614250
\(581\) 10206.0 0.728771
\(582\) 0 0
\(583\) 264.000 0.0187543
\(584\) 23352.0 1.65464
\(585\) 0 0
\(586\) −16704.0 −1.17754
\(587\) −8267.00 −0.581287 −0.290644 0.956831i \(-0.593869\pi\)
−0.290644 + 0.956831i \(0.593869\pi\)
\(588\) 0 0
\(589\) −22470.0 −1.57192
\(590\) −13750.0 −0.959455
\(591\) 0 0
\(592\) −528.000 −0.0366565
\(593\) −6700.00 −0.463973 −0.231987 0.972719i \(-0.574523\pi\)
−0.231987 + 0.972719i \(0.574523\pi\)
\(594\) 0 0
\(595\) 9086.00 0.626033
\(596\) −92.0000 −0.00632293
\(597\) 0 0
\(598\) 680.000 0.0465004
\(599\) −10496.0 −0.715951 −0.357976 0.933731i \(-0.616533\pi\)
−0.357976 + 0.933731i \(0.616533\pi\)
\(600\) 0 0
\(601\) −10855.0 −0.736747 −0.368373 0.929678i \(-0.620085\pi\)
−0.368373 + 0.929678i \(0.620085\pi\)
\(602\) −2352.00 −0.159236
\(603\) 0 0
\(604\) 7240.00 0.487734
\(605\) −1331.00 −0.0894427
\(606\) 0 0
\(607\) −11605.0 −0.776001 −0.388000 0.921659i \(-0.626834\pi\)
−0.388000 + 0.921659i \(0.626834\pi\)
\(608\) 16800.0 1.12061
\(609\) 0 0
\(610\) −12276.0 −0.814821
\(611\) 305.000 0.0201947
\(612\) 0 0
\(613\) 11354.0 0.748097 0.374049 0.927409i \(-0.377969\pi\)
0.374049 + 0.927409i \(0.377969\pi\)
\(614\) −17800.0 −1.16995
\(615\) 0 0
\(616\) 1848.00 0.120873
\(617\) −2994.00 −0.195355 −0.0976774 0.995218i \(-0.531141\pi\)
−0.0976774 + 0.995218i \(0.531141\pi\)
\(618\) 0 0
\(619\) 13082.0 0.849451 0.424725 0.905322i \(-0.360371\pi\)
0.424725 + 0.905322i \(0.360371\pi\)
\(620\) 9416.00 0.609928
\(621\) 0 0
\(622\) 11952.0 0.770469
\(623\) −1386.00 −0.0891315
\(624\) 0 0
\(625\) −15109.0 −0.966976
\(626\) 5708.00 0.364437
\(627\) 0 0
\(628\) 3472.00 0.220618
\(629\) 3894.00 0.246843
\(630\) 0 0
\(631\) 14212.0 0.896626 0.448313 0.893877i \(-0.352025\pi\)
0.448313 + 0.893877i \(0.352025\pi\)
\(632\) −25728.0 −1.61931
\(633\) 0 0
\(634\) 6304.00 0.394896
\(635\) −12430.0 −0.776802
\(636\) 0 0
\(637\) −245.000 −0.0152390
\(638\) 4290.00 0.266211
\(639\) 0 0
\(640\) −4224.00 −0.260888
\(641\) −30.0000 −0.00184856 −0.000924281 1.00000i \(-0.500294\pi\)
−0.000924281 1.00000i \(0.500294\pi\)
\(642\) 0 0
\(643\) −28216.0 −1.73053 −0.865265 0.501315i \(-0.832850\pi\)
−0.865265 + 0.501315i \(0.832850\pi\)
\(644\) 1904.00 0.116503
\(645\) 0 0
\(646\) 24780.0 1.50922
\(647\) −15991.0 −0.971671 −0.485835 0.874050i \(-0.661485\pi\)
−0.485835 + 0.874050i \(0.661485\pi\)
\(648\) 0 0
\(649\) 6875.00 0.415820
\(650\) −40.0000 −0.00241374
\(651\) 0 0
\(652\) 9068.00 0.544678
\(653\) 20752.0 1.24363 0.621814 0.783165i \(-0.286396\pi\)
0.621814 + 0.783165i \(0.286396\pi\)
\(654\) 0 0
\(655\) 24288.0 1.44887
\(656\) −6016.00 −0.358057
\(657\) 0 0
\(658\) −854.000 −0.0505963
\(659\) 10447.0 0.617538 0.308769 0.951137i \(-0.400083\pi\)
0.308769 + 0.951137i \(0.400083\pi\)
\(660\) 0 0
\(661\) −17564.0 −1.03353 −0.516763 0.856129i \(-0.672863\pi\)
−0.516763 + 0.856129i \(0.672863\pi\)
\(662\) −20864.0 −1.22493
\(663\) 0 0
\(664\) −34992.0 −2.04511
\(665\) −8085.00 −0.471463
\(666\) 0 0
\(667\) 13260.0 0.769759
\(668\) 12096.0 0.700611
\(669\) 0 0
\(670\) 3806.00 0.219461
\(671\) 6138.00 0.353137
\(672\) 0 0
\(673\) −21088.0 −1.20785 −0.603925 0.797041i \(-0.706397\pi\)
−0.603925 + 0.797041i \(0.706397\pi\)
\(674\) −4072.00 −0.232712
\(675\) 0 0
\(676\) 8688.00 0.494310
\(677\) −16470.0 −0.934998 −0.467499 0.883994i \(-0.654845\pi\)
−0.467499 + 0.883994i \(0.654845\pi\)
\(678\) 0 0
\(679\) 2464.00 0.139263
\(680\) −31152.0 −1.75680
\(681\) 0 0
\(682\) 4708.00 0.264338
\(683\) −13030.0 −0.729984 −0.364992 0.931011i \(-0.618928\pi\)
−0.364992 + 0.931011i \(0.618928\pi\)
\(684\) 0 0
\(685\) −18238.0 −1.01728
\(686\) 686.000 0.0381802
\(687\) 0 0
\(688\) 2688.00 0.148952
\(689\) 120.000 0.00663518
\(690\) 0 0
\(691\) −18886.0 −1.03974 −0.519868 0.854247i \(-0.674019\pi\)
−0.519868 + 0.854247i \(0.674019\pi\)
\(692\) 5088.00 0.279504
\(693\) 0 0
\(694\) 9664.00 0.528589
\(695\) 23320.0 1.27277
\(696\) 0 0
\(697\) 44368.0 2.41113
\(698\) −9102.00 −0.493576
\(699\) 0 0
\(700\) −112.000 −0.00604743
\(701\) 29966.0 1.61455 0.807275 0.590175i \(-0.200941\pi\)
0.807275 + 0.590175i \(0.200941\pi\)
\(702\) 0 0
\(703\) −3465.00 −0.185896
\(704\) −4928.00 −0.263822
\(705\) 0 0
\(706\) 21570.0 1.14986
\(707\) 4942.00 0.262890
\(708\) 0 0
\(709\) −22597.0 −1.19696 −0.598482 0.801136i \(-0.704229\pi\)
−0.598482 + 0.801136i \(0.704229\pi\)
\(710\) −3696.00 −0.195364
\(711\) 0 0
\(712\) 4752.00 0.250125
\(713\) 14552.0 0.764343
\(714\) 0 0
\(715\) −605.000 −0.0316444
\(716\) −12912.0 −0.673944
\(717\) 0 0
\(718\) −13976.0 −0.726434
\(719\) 20229.0 1.04926 0.524628 0.851332i \(-0.324205\pi\)
0.524628 + 0.851332i \(0.324205\pi\)
\(720\) 0 0
\(721\) −7238.00 −0.373866
\(722\) −8332.00 −0.429481
\(723\) 0 0
\(724\) 13808.0 0.708799
\(725\) −780.000 −0.0399565
\(726\) 0 0
\(727\) −15792.0 −0.805630 −0.402815 0.915281i \(-0.631968\pi\)
−0.402815 + 0.915281i \(0.631968\pi\)
\(728\) 840.000 0.0427644
\(729\) 0 0
\(730\) 21406.0 1.08530
\(731\) −19824.0 −1.00303
\(732\) 0 0
\(733\) 17370.0 0.875274 0.437637 0.899152i \(-0.355816\pi\)
0.437637 + 0.899152i \(0.355816\pi\)
\(734\) −8684.00 −0.436692
\(735\) 0 0
\(736\) −10880.0 −0.544894
\(737\) −1903.00 −0.0951125
\(738\) 0 0
\(739\) 36824.0 1.83301 0.916504 0.400026i \(-0.130999\pi\)
0.916504 + 0.400026i \(0.130999\pi\)
\(740\) 1452.00 0.0721305
\(741\) 0 0
\(742\) −336.000 −0.0166239
\(743\) 10327.0 0.509907 0.254953 0.966953i \(-0.417940\pi\)
0.254953 + 0.966953i \(0.417940\pi\)
\(744\) 0 0
\(745\) −253.000 −0.0124419
\(746\) 25348.0 1.24404
\(747\) 0 0
\(748\) 5192.00 0.253795
\(749\) −4725.00 −0.230504
\(750\) 0 0
\(751\) −22955.0 −1.11537 −0.557683 0.830054i \(-0.688310\pi\)
−0.557683 + 0.830054i \(0.688310\pi\)
\(752\) 976.000 0.0473285
\(753\) 0 0
\(754\) 1950.00 0.0941841
\(755\) 19910.0 0.959734
\(756\) 0 0
\(757\) −28591.0 −1.37273 −0.686366 0.727257i \(-0.740795\pi\)
−0.686366 + 0.727257i \(0.740795\pi\)
\(758\) 26362.0 1.26321
\(759\) 0 0
\(760\) 27720.0 1.32304
\(761\) −1920.00 −0.0914585 −0.0457293 0.998954i \(-0.514561\pi\)
−0.0457293 + 0.998954i \(0.514561\pi\)
\(762\) 0 0
\(763\) 7994.00 0.379295
\(764\) 8296.00 0.392852
\(765\) 0 0
\(766\) −2176.00 −0.102640
\(767\) 3125.00 0.147115
\(768\) 0 0
\(769\) −34393.0 −1.61280 −0.806400 0.591370i \(-0.798587\pi\)
−0.806400 + 0.591370i \(0.798587\pi\)
\(770\) 1694.00 0.0792825
\(771\) 0 0
\(772\) −4816.00 −0.224523
\(773\) 2481.00 0.115440 0.0577202 0.998333i \(-0.481617\pi\)
0.0577202 + 0.998333i \(0.481617\pi\)
\(774\) 0 0
\(775\) −856.000 −0.0396754
\(776\) −8448.00 −0.390806
\(777\) 0 0
\(778\) 2712.00 0.124974
\(779\) −39480.0 −1.81581
\(780\) 0 0
\(781\) 1848.00 0.0846692
\(782\) −16048.0 −0.733856
\(783\) 0 0
\(784\) −784.000 −0.0357143
\(785\) 9548.00 0.434118
\(786\) 0 0
\(787\) −14255.0 −0.645662 −0.322831 0.946457i \(-0.604635\pi\)
−0.322831 + 0.946457i \(0.604635\pi\)
\(788\) −8344.00 −0.377212
\(789\) 0 0
\(790\) −23584.0 −1.06213
\(791\) 1134.00 0.0509740
\(792\) 0 0
\(793\) 2790.00 0.124938
\(794\) 16204.0 0.724255
\(795\) 0 0
\(796\) −5376.00 −0.239381
\(797\) −9649.00 −0.428840 −0.214420 0.976742i \(-0.568786\pi\)
−0.214420 + 0.976742i \(0.568786\pi\)
\(798\) 0 0
\(799\) −7198.00 −0.318707
\(800\) 640.000 0.0282843
\(801\) 0 0
\(802\) −25432.0 −1.11974
\(803\) −10703.0 −0.470362
\(804\) 0 0
\(805\) 5236.00 0.229248
\(806\) 2140.00 0.0935214
\(807\) 0 0
\(808\) −16944.0 −0.737732
\(809\) −6285.00 −0.273138 −0.136569 0.990631i \(-0.543608\pi\)
−0.136569 + 0.990631i \(0.543608\pi\)
\(810\) 0 0
\(811\) −14567.0 −0.630723 −0.315362 0.948972i \(-0.602126\pi\)
−0.315362 + 0.948972i \(0.602126\pi\)
\(812\) 5460.00 0.235971
\(813\) 0 0
\(814\) 726.000 0.0312608
\(815\) 24937.0 1.07179
\(816\) 0 0
\(817\) 17640.0 0.755380
\(818\) 17532.0 0.749379
\(819\) 0 0
\(820\) 16544.0 0.704563
\(821\) 35833.0 1.52324 0.761620 0.648024i \(-0.224404\pi\)
0.761620 + 0.648024i \(0.224404\pi\)
\(822\) 0 0
\(823\) 16917.0 0.716512 0.358256 0.933623i \(-0.383371\pi\)
0.358256 + 0.933623i \(0.383371\pi\)
\(824\) 24816.0 1.04916
\(825\) 0 0
\(826\) −8750.00 −0.368585
\(827\) 11243.0 0.472742 0.236371 0.971663i \(-0.424042\pi\)
0.236371 + 0.971663i \(0.424042\pi\)
\(828\) 0 0
\(829\) −5312.00 −0.222549 −0.111275 0.993790i \(-0.535493\pi\)
−0.111275 + 0.993790i \(0.535493\pi\)
\(830\) −32076.0 −1.34141
\(831\) 0 0
\(832\) −2240.00 −0.0933390
\(833\) 5782.00 0.240498
\(834\) 0 0
\(835\) 33264.0 1.37862
\(836\) −4620.00 −0.191132
\(837\) 0 0
\(838\) −11458.0 −0.472327
\(839\) −44429.0 −1.82820 −0.914100 0.405489i \(-0.867101\pi\)
−0.914100 + 0.405489i \(0.867101\pi\)
\(840\) 0 0
\(841\) 13636.0 0.559105
\(842\) −17966.0 −0.735332
\(843\) 0 0
\(844\) −5208.00 −0.212401
\(845\) 23892.0 0.972674
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 384.000 0.0155503
\(849\) 0 0
\(850\) 944.000 0.0380929
\(851\) 2244.00 0.0903917
\(852\) 0 0
\(853\) 35678.0 1.43211 0.716056 0.698043i \(-0.245946\pi\)
0.716056 + 0.698043i \(0.245946\pi\)
\(854\) −7812.00 −0.313022
\(855\) 0 0
\(856\) 16200.0 0.646851
\(857\) −20830.0 −0.830267 −0.415134 0.909760i \(-0.636265\pi\)
−0.415134 + 0.909760i \(0.636265\pi\)
\(858\) 0 0
\(859\) −30336.0 −1.20495 −0.602474 0.798138i \(-0.705818\pi\)
−0.602474 + 0.798138i \(0.705818\pi\)
\(860\) −7392.00 −0.293099
\(861\) 0 0
\(862\) −20478.0 −0.809146
\(863\) 28716.0 1.13268 0.566341 0.824171i \(-0.308359\pi\)
0.566341 + 0.824171i \(0.308359\pi\)
\(864\) 0 0
\(865\) 13992.0 0.549991
\(866\) 19864.0 0.779453
\(867\) 0 0
\(868\) 5992.00 0.234311
\(869\) 11792.0 0.460318
\(870\) 0 0
\(871\) −865.000 −0.0336503
\(872\) −27408.0 −1.06439
\(873\) 0 0
\(874\) 14280.0 0.552664
\(875\) −9933.00 −0.383768
\(876\) 0 0
\(877\) 39408.0 1.51735 0.758674 0.651471i \(-0.225848\pi\)
0.758674 + 0.651471i \(0.225848\pi\)
\(878\) 19786.0 0.760530
\(879\) 0 0
\(880\) −1936.00 −0.0741620
\(881\) 4373.00 0.167231 0.0836153 0.996498i \(-0.473353\pi\)
0.0836153 + 0.996498i \(0.473353\pi\)
\(882\) 0 0
\(883\) 36163.0 1.37824 0.689118 0.724649i \(-0.257998\pi\)
0.689118 + 0.724649i \(0.257998\pi\)
\(884\) 2360.00 0.0897912
\(885\) 0 0
\(886\) 30352.0 1.15090
\(887\) −82.0000 −0.00310405 −0.00155202 0.999999i \(-0.500494\pi\)
−0.00155202 + 0.999999i \(0.500494\pi\)
\(888\) 0 0
\(889\) −7910.00 −0.298417
\(890\) 4356.00 0.164060
\(891\) 0 0
\(892\) 3704.00 0.139035
\(893\) 6405.00 0.240017
\(894\) 0 0
\(895\) −35508.0 −1.32615
\(896\) −2688.00 −0.100223
\(897\) 0 0
\(898\) 1712.00 0.0636194
\(899\) 41730.0 1.54814
\(900\) 0 0
\(901\) −2832.00 −0.104714
\(902\) 8272.00 0.305352
\(903\) 0 0
\(904\) −3888.00 −0.143045
\(905\) 37972.0 1.39473
\(906\) 0 0
\(907\) −5580.00 −0.204279 −0.102139 0.994770i \(-0.532569\pi\)
−0.102139 + 0.994770i \(0.532569\pi\)
\(908\) −16824.0 −0.614894
\(909\) 0 0
\(910\) 770.000 0.0280497
\(911\) 25050.0 0.911025 0.455512 0.890229i \(-0.349456\pi\)
0.455512 + 0.890229i \(0.349456\pi\)
\(912\) 0 0
\(913\) 16038.0 0.581359
\(914\) 16560.0 0.599296
\(915\) 0 0
\(916\) 6432.00 0.232008
\(917\) 15456.0 0.556600
\(918\) 0 0
\(919\) −10316.0 −0.370287 −0.185143 0.982712i \(-0.559275\pi\)
−0.185143 + 0.982712i \(0.559275\pi\)
\(920\) −17952.0 −0.643326
\(921\) 0 0
\(922\) 4176.00 0.149164
\(923\) 840.000 0.0299555
\(924\) 0 0
\(925\) −132.000 −0.00469204
\(926\) 38566.0 1.36864
\(927\) 0 0
\(928\) −31200.0 −1.10365
\(929\) −12969.0 −0.458018 −0.229009 0.973424i \(-0.573549\pi\)
−0.229009 + 0.973424i \(0.573549\pi\)
\(930\) 0 0
\(931\) −5145.00 −0.181118
\(932\) 25608.0 0.900019
\(933\) 0 0
\(934\) 21594.0 0.756507
\(935\) 14278.0 0.499402
\(936\) 0 0
\(937\) −50986.0 −1.77763 −0.888815 0.458265i \(-0.848471\pi\)
−0.888815 + 0.458265i \(0.848471\pi\)
\(938\) 2422.00 0.0843082
\(939\) 0 0
\(940\) −2684.00 −0.0931302
\(941\) 17172.0 0.594890 0.297445 0.954739i \(-0.403866\pi\)
0.297445 + 0.954739i \(0.403866\pi\)
\(942\) 0 0
\(943\) 25568.0 0.882936
\(944\) 10000.0 0.344780
\(945\) 0 0
\(946\) −3696.00 −0.127027
\(947\) −52482.0 −1.80088 −0.900441 0.434978i \(-0.856756\pi\)
−0.900441 + 0.434978i \(0.856756\pi\)
\(948\) 0 0
\(949\) −4865.00 −0.166412
\(950\) −840.000 −0.0286876
\(951\) 0 0
\(952\) −19824.0 −0.674894
\(953\) −22709.0 −0.771896 −0.385948 0.922521i \(-0.626126\pi\)
−0.385948 + 0.922521i \(0.626126\pi\)
\(954\) 0 0
\(955\) 22814.0 0.773030
\(956\) −7044.00 −0.238305
\(957\) 0 0
\(958\) −5188.00 −0.174965
\(959\) −11606.0 −0.390800
\(960\) 0 0
\(961\) 16005.0 0.537243
\(962\) 330.000 0.0110599
\(963\) 0 0
\(964\) −19804.0 −0.661664
\(965\) −13244.0 −0.441803
\(966\) 0 0
\(967\) 49354.0 1.64128 0.820640 0.571446i \(-0.193617\pi\)
0.820640 + 0.571446i \(0.193617\pi\)
\(968\) 2904.00 0.0964237
\(969\) 0 0
\(970\) −7744.00 −0.256335
\(971\) −26683.0 −0.881873 −0.440936 0.897538i \(-0.645354\pi\)
−0.440936 + 0.897538i \(0.645354\pi\)
\(972\) 0 0
\(973\) 14840.0 0.488950
\(974\) −24064.0 −0.791643
\(975\) 0 0
\(976\) 8928.00 0.292806
\(977\) 41856.0 1.37062 0.685308 0.728253i \(-0.259668\pi\)
0.685308 + 0.728253i \(0.259668\pi\)
\(978\) 0 0
\(979\) −2178.00 −0.0711023
\(980\) 2156.00 0.0702764
\(981\) 0 0
\(982\) 15898.0 0.516625
\(983\) 15720.0 0.510061 0.255031 0.966933i \(-0.417914\pi\)
0.255031 + 0.966933i \(0.417914\pi\)
\(984\) 0 0
\(985\) −22946.0 −0.742254
\(986\) −46020.0 −1.48638
\(987\) 0 0
\(988\) −2100.00 −0.0676214
\(989\) −11424.0 −0.367302
\(990\) 0 0
\(991\) −24851.0 −0.796587 −0.398294 0.917258i \(-0.630398\pi\)
−0.398294 + 0.917258i \(0.630398\pi\)
\(992\) −34240.0 −1.09589
\(993\) 0 0
\(994\) −2352.00 −0.0750512
\(995\) −14784.0 −0.471040
\(996\) 0 0
\(997\) 42518.0 1.35061 0.675305 0.737538i \(-0.264012\pi\)
0.675305 + 0.737538i \(0.264012\pi\)
\(998\) 34106.0 1.08177
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.d.1.1 1
3.2 odd 2 231.4.a.c.1.1 1
21.20 even 2 1617.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.c.1.1 1 3.2 odd 2
693.4.a.d.1.1 1 1.1 even 1 trivial
1617.4.a.e.1.1 1 21.20 even 2