Properties

Label 7.4
Level 7
Weight 4
Dimension 3
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 16
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(7))\).

Total New Old
Modular forms 9 7 2
Cusp forms 3 3 0
Eisenstein series 6 4 2

Trace form

\( 3 q - 3 q^{2} - 9 q^{3} - 3 q^{4} + 9 q^{5} + 30 q^{6} + 21 q^{7} - 33 q^{8} - 45 q^{9} - 30 q^{10} - 3 q^{11} + 42 q^{12} + 21 q^{14} + 66 q^{15} + 57 q^{16} + 75 q^{17} - 21 q^{18} - 159 q^{19} - 168 q^{20}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7.4.a \(\chi_{7}(1, \cdot)\) 7.4.a.a 1 1
7.4.c \(\chi_{7}(2, \cdot)\) 7.4.c.a 2 2