Properties

Label 7.4
Level 7
Weight 4
Dimension 3
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 16
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 7 7
Weight: k k = 4 4
Nonzero newspaces: 2 2
Newform subspaces: 2 2
Sturm bound: 1616
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(7))M_{4}(\Gamma_1(7)).

Total New Old
Modular forms 9 7 2
Cusp forms 3 3 0
Eisenstein series 6 4 2

Trace form

3q3q29q33q4+9q5+30q6+21q733q845q930q103q11+42q12+21q14+66q15+57q16+75q1721q18159q19168q20+36q99+O(q100) 3 q - 3 q^{2} - 9 q^{3} - 3 q^{4} + 9 q^{5} + 30 q^{6} + 21 q^{7} - 33 q^{8} - 45 q^{9} - 30 q^{10} - 3 q^{11} + 42 q^{12} + 21 q^{14} + 66 q^{15} + 57 q^{16} + 75 q^{17} - 21 q^{18} - 159 q^{19} - 168 q^{20}+ \cdots - 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(7))S_{4}^{\mathrm{new}}(\Gamma_1(7))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
7.4.a χ7(1,)\chi_{7}(1, \cdot) 7.4.a.a 1 1
7.4.c χ7(2,)\chi_{7}(2, \cdot) 7.4.c.a 2 2