Defining parameters
Level: | \( N \) | \(=\) | \( 70 = 2 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 70.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(70, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 8 | 32 |
Cusp forms | 32 | 8 | 24 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(70, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
70.4.c.a | $2$ | $4.130$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(20\) | \(0\) | \(q+2 i q^{2}+7 i q^{3}-4 q^{4}+(5 i+10)q^{5}+\cdots\) |
70.4.c.b | $6$ | $4.130$ | 6.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-16\) | \(0\) | \(q+2\beta _{3}q^{2}+(-2\beta _{3}+\beta _{5})q^{3}-4q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(70, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(70, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)