Properties

Label 70.4.c
Level $70$
Weight $4$
Character orbit 70.c
Rep. character $\chi_{70}(29,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $48$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 70.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(70, [\chi])\).

Total New Old
Modular forms 40 8 32
Cusp forms 32 8 24
Eisenstein series 8 0 8

Trace form

\( 8 q - 32 q^{4} + 4 q^{5} - 196 q^{9} - 56 q^{10} - 36 q^{11} + 56 q^{14} + 40 q^{15} + 128 q^{16} - 96 q^{19} - 16 q^{20} - 196 q^{21} + 636 q^{25} + 368 q^{26} + 316 q^{29} - 200 q^{30} + 72 q^{31} - 784 q^{34}+ \cdots + 8184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(70, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
70.4.c.a 70.c 5.b $2$ $4.130$ \(\Q(\sqrt{-1}) \) None 70.4.c.a \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+7 i q^{3}-4 q^{4}+(5 i+10)q^{5}+\cdots\)
70.4.c.b 70.c 5.b $6$ $4.130$ 6.0.\(\cdots\).1 None 70.4.c.b \(0\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{3}q^{2}+(-2\beta _{3}+\beta _{5})q^{3}-4q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(70, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(70, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)