Properties

Label 70.8.a
Level $70$
Weight $8$
Character orbit 70.a
Rep. character $\chi_{70}(1,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $8$
Sturm bound $96$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(96\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(70))\).

Total New Old
Modular forms 88 14 74
Cusp forms 80 14 66
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(8\)
Minus space\(-\)\(6\)

Trace form

\( 14 q - 16 q^{2} + 52 q^{3} + 896 q^{4} - 1376 q^{6} - 1024 q^{8} + 11294 q^{9} + 1360 q^{11} + 3328 q^{12} + 19144 q^{13} - 3500 q^{15} + 57344 q^{16} - 42580 q^{17} + 13360 q^{18} + 49540 q^{19} - 56252 q^{21}+ \cdots - 1263088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(70))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7
70.8.a.a 70.a 1.a $1$ $21.867$ \(\Q\) None 70.8.a.a \(8\) \(-93\) \(125\) \(343\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}-93q^{3}+2^{6}q^{4}+5^{3}q^{5}-744q^{6}+\cdots\)
70.8.a.b 70.a 1.a $1$ $21.867$ \(\Q\) None 70.8.a.b \(8\) \(9\) \(-125\) \(-343\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+9q^{3}+2^{6}q^{4}-5^{3}q^{5}+72q^{6}+\cdots\)
70.8.a.c 70.a 1.a $2$ $21.867$ \(\Q(\sqrt{9241}) \) None 70.8.a.c \(-16\) \(11\) \(-250\) \(686\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(6-\beta )q^{3}+2^{6}q^{4}-5^{3}q^{5}+\cdots\)
70.8.a.d 70.a 1.a $2$ $21.867$ \(\Q(\sqrt{11761}) \) None 70.8.a.d \(-16\) \(25\) \(-250\) \(-686\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(13-\beta )q^{3}+2^{6}q^{4}-5^{3}q^{5}+\cdots\)
70.8.a.e 70.a 1.a $2$ $21.867$ \(\Q(\sqrt{18481}) \) None 70.8.a.e \(-16\) \(31\) \(250\) \(686\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(2^{4}-\beta )q^{3}+2^{6}q^{4}+5^{3}q^{5}+\cdots\)
70.8.a.f 70.a 1.a $2$ $21.867$ \(\Q(\sqrt{1401}) \) None 70.8.a.f \(-16\) \(45\) \(250\) \(-686\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(23-\beta )q^{3}+2^{6}q^{4}+5^{3}q^{5}+\cdots\)
70.8.a.g 70.a 1.a $2$ $21.867$ \(\Q(\sqrt{8761}) \) None 70.8.a.g \(16\) \(-5\) \(-250\) \(686\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-2-\beta )q^{3}+2^{6}q^{4}-5^{3}q^{5}+\cdots\)
70.8.a.h 70.a 1.a $2$ $21.867$ \(\Q(\sqrt{12121}) \) None 70.8.a.h \(16\) \(29\) \(250\) \(-686\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(15-\beta )q^{3}+2^{6}q^{4}+5^{3}q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(70))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(70)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)