Defining parameters
Level: | \( N \) | \(=\) | \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 700.s (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(600\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 996 | 102 | 894 |
Cusp forms | 924 | 102 | 822 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(700, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
700.5.s.a | $6$ | $72.359$ | 6.0.11337408.1 | None | \(0\) | \(-9\) | \(0\) | \(-66\) | \(q+(-2+\beta _{1}-\beta _{3})q^{3}+(-9-4\beta _{1}+\cdots)q^{7}+\cdots\) |
700.5.s.b | $20$ | $72.359$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(18\) | \(0\) | \(22\) | \(q+(1-\beta _{3}-\beta _{4})q^{3}+(2-\beta _{1}+2\beta _{3}+\cdots)q^{7}+\cdots\) |
700.5.s.c | $22$ | $72.359$ | None | \(0\) | \(-9\) | \(0\) | \(-66\) | ||
700.5.s.d | $22$ | $72.359$ | None | \(0\) | \(9\) | \(0\) | \(66\) | ||
700.5.s.e | $32$ | $72.359$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{5}^{\mathrm{old}}(700, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(700, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)