Properties

Label 700.5.s
Level $700$
Weight $5$
Character orbit 700.s
Rep. character $\chi_{700}(101,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $102$
Newform subspaces $5$
Sturm bound $600$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(600\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(700, [\chi])\).

Total New Old
Modular forms 996 102 894
Cusp forms 924 102 822
Eisenstein series 72 0 72

Trace form

\( 102 q + 9 q^{3} - 44 q^{7} + 1422 q^{9} - 135 q^{11} + 243 q^{17} - 825 q^{19} + 145 q^{21} + 423 q^{23} + 924 q^{29} + 1113 q^{31} + 2247 q^{33} + 545 q^{37} - 1644 q^{39} - 7808 q^{43} - 3897 q^{47} - 2646 q^{49}+ \cdots - 66200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
700.5.s.a 700.s 7.d $6$ $72.359$ 6.0.11337408.1 None 28.5.h.a \(0\) \(-9\) \(0\) \(-66\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\beta _{1}-\beta _{3})q^{3}+(-9-4\beta _{1}+\cdots)q^{7}+\cdots\)
700.5.s.b 700.s 7.d $20$ $72.359$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 140.5.r.a \(0\) \(18\) \(0\) \(22\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\beta _{3}-\beta _{4})q^{3}+(2-\beta _{1}+2\beta _{3}+\cdots)q^{7}+\cdots\)
700.5.s.c 700.s 7.d $22$ $72.359$ None 700.5.s.c \(0\) \(-9\) \(0\) \(-66\) $\mathrm{SU}(2)[C_{6}]$
700.5.s.d 700.s 7.d $22$ $72.359$ None 700.5.s.c \(0\) \(9\) \(0\) \(66\) $\mathrm{SU}(2)[C_{6}]$
700.5.s.e 700.s 7.d $32$ $72.359$ None 140.5.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{5}^{\mathrm{old}}(700, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(700, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)