Properties

Label 704.1.x
Level 704704
Weight 11
Character orbit 704.x
Rep. character χ704(161,)\chi_{704}(161,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 88
Newform subspaces 11
Sturm bound 9696
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 704=2611 704 = 2^{6} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 704.x (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 88 88
Character field: Q(ζ10)\Q(\zeta_{10})
Newform subspaces: 1 1
Sturm bound: 9696
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M1(704,[χ])M_{1}(704, [\chi]).

Total New Old
Modular forms 56 8 48
Cusp forms 8 8 0
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 8 0 0 0

Trace form

8q+6q92q256q332q4910q574q89+6q97+O(q100) 8 q + 6 q^{9} - 2 q^{25} - 6 q^{33} - 2 q^{49} - 10 q^{57} - 4 q^{89} + 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(704,[χ])S_{1}^{\mathrm{new}}(704, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
704.1.x.a 704.x 88.p 88 0.3510.351 Q(ζ20)\Q(\zeta_{20}) D10D_{10} Q(2)\Q(\sqrt{-2}) None 704.1.x.a 00 00 00 00 q+(ζ207ζ209)q3+(ζ204+ζ206+)q9+q+(\zeta_{20}^{7}-\zeta_{20}^{9})q^{3}+(-\zeta_{20}^{4}+\zeta_{20}^{6}+\cdots)q^{9}+\cdots