Properties

Label 704.2.m
Level $704$
Weight $2$
Character orbit 704.m
Rep. character $\chi_{704}(257,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $88$
Newform subspaces $14$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 14 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(704, [\chi])\).

Total New Old
Modular forms 432 104 328
Cusp forms 336 88 248
Eisenstein series 96 16 80

Trace form

\( 88 q + 6 q^{5} - 24 q^{9} + 6 q^{13} - 6 q^{17} + 4 q^{21} - 20 q^{25} - 10 q^{29} - 10 q^{33} + 30 q^{37} - 22 q^{41} - 112 q^{45} - 16 q^{49} + 54 q^{53} - 10 q^{57} + 6 q^{61} + 4 q^{65} + 48 q^{69}+ \cdots - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(704, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
704.2.m.a 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 22.2.c.a \(0\) \(-4\) \(6\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}+2\zeta_{10}^{2}-\zeta_{10}^{3})q^{3}+(2+\cdots)q^{5}+\cdots\)
704.2.m.b 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 88.2.i.a \(0\) \(-3\) \(-3\) \(-3\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{3}+(-1+\cdots)q^{5}+\cdots\)
704.2.m.c 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 352.2.m.a \(0\) \(-2\) \(6\) \(10\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}-\zeta_{10}^{3})q^{3}+(2+2\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
704.2.m.d 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 44.2.e.a \(0\) \(-1\) \(-3\) \(7\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}-\zeta_{10}^{2}-\zeta_{10}^{3})q^{3}+(-1+\cdots)q^{5}+\cdots\)
704.2.m.e 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 44.2.e.a \(0\) \(1\) \(-3\) \(-7\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(-1-\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
704.2.m.f 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 352.2.m.a \(0\) \(2\) \(6\) \(-10\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}+\zeta_{10}^{3})q^{3}+(2+2\zeta_{10}^{2})q^{5}+\cdots\)
704.2.m.g 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 88.2.i.a \(0\) \(3\) \(-3\) \(3\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(-1-\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
704.2.m.h 704.m 11.c $4$ $5.621$ \(\Q(\zeta_{10})\) None 22.2.c.a \(0\) \(4\) \(6\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(2+2\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
704.2.m.i 704.m 11.c $8$ $5.621$ 8.0.682515625.5 None 88.2.i.b \(0\) \(-1\) \(3\) \(-7\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{1}+\beta _{4}-\beta _{6})q^{3}+(-\beta _{3}+\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\)
704.2.m.j 704.m 11.c $8$ $5.621$ 8.0.484000000.6 None 352.2.m.d \(0\) \(0\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-2\beta _{1}+\beta _{6}-\beta _{7})q^{3}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)
704.2.m.k 704.m 11.c $8$ $5.621$ 8.0.484000000.9 None 352.2.m.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{1}q^{3}+(-\beta _{2}-\beta _{3}-\beta _{5})q^{5}+(-\beta _{4}+\cdots)q^{7}+\cdots\)
704.2.m.l 704.m 11.c $8$ $5.621$ 8.0.682515625.5 None 88.2.i.b \(0\) \(1\) \(3\) \(7\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta _{1}-\beta _{4}+\beta _{6})q^{3}+(-\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots\)
704.2.m.m 704.m 11.c $12$ $5.621$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 352.2.m.e \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta _{5}+\beta _{8})q^{3}-\beta _{9}q^{5}+(-1+\beta _{4}+\cdots)q^{7}+\cdots\)
704.2.m.n 704.m 11.c $12$ $5.621$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 352.2.m.e \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{5}-\beta _{8})q^{3}-\beta _{9}q^{5}+(1-\beta _{4}-\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(704, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(704, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)